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Fig. 1: Overview of the Robustness Analysis Framework. A: Simulation setup showing trajectories for pushing and scooping tasks with
multiple objects (orange) and robot end-effectors (green). B: Frame-by-frame robustness analysis using energy margins to evaluate the
likelihood of robust and successful manipulation. C: Calculation of energy margins involves applying serial random wrench perturbations
to each object, accounting for the predictive model’s uncertainty. Potential paths for one exemplar object (red) is visualized. D: Real-world
application with an initial experiment on multi-object scooping, highlighting future directions for this research.

Abstract— Quantifying robustness is crucial for developing
effective manipulation policies. However, assessing the ro-
bustness of manipulating multiple objects simultaneously is
challenging due to uncertainties in predictive models, complex
interactions among objects, and the high-dimensional nature
of the joint state space. This workshop contribution introduces
an approach for analyzing manipulation robustness through
energy margins and caging-based analysis. Our approach
evaluates multi-object manipulation robustness by measuring
the energy margin to failure. Enabled by a kinodynamic
planning framework that incorporates inter-object interactions
and contact dynamics, this method provides a systematic way to
predict manipulation robustness and success under uncertainty.
We demonstrate the utility of this approach with two simulated
tasks, scooping and planar pushing, highlighting its capability to
handle and represent high-dimensional state spaces effectively.

I. INTRODUCTION

Human manipulation is notable for its dexterity, simplicity,
and robustness, often allowing the simultaneous manipu-
lation of multiple objects. However, existing methods for
evaluating the robustness of such multi-object manipulation
are limited. The main challenges include: (1) complex inter-
object interactions and nonholonomic contact constraints [1],
(2) inaccuracies in predictive models due to the uncertainties
in contact modeling [2], and (3) the high dimensionality of
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the combined state space of objects and the robot, often
leading to computational difficulties.

Current research on robustness is generally divided into
three categories: grasp quality metrics [3], [4], control sta-
bility analysis (including contraction analysis [5], Lyapunov
functions [6] and barrier functions [7]), and caging. Most
quality metrics in grasping [8] and non-prehensile manip-
ulation [9] [10] usually define robustness through object
positional or wrench space margins based on first-order anal-
ysis. Control stability methods offer a local perspective that
struggles to account for the robustness of global geometric
properties. These methods above often fail to address the full
complexity of multi-object manipulation, particularly when
it involves complicated interactions and dynamic changes.

Caging approaches, which confine an object within a
bounded space to prevent escape, provide a more global
geometric analysis of robustness. Caging was introduced by
Kuperberg [11] and further developed by Rimon et al. [12],
[13]. Caging an object only partially has been enhanced by
considering external forces such as gravity [14] or elastic
forces [15]. Partial caging can thereby robustly secure an
object under an external perturbation level. Caging in motion
[16], which this work is established upon, expands on prior
quasi-static cage [17] and soft fixture [15] analyses by
adapting classical caging concepts to a kinodynamic context.

Inspired by the line of energy-based caging research
[14], [18], [15] and extending [16], this workshop contri-
bution introduces a new lens by evaluating the robustness
of manipulation strategies through energy margins from
failure. A sampling-based kinodynamic planning framework
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is employed for energy margin computation, designed to be
inherently efficient in dynamic, contact-rich environments
with multiple objects. Utilizing forward simulation enables
natural consideration of inter-object contact interactions and
complex geometries. We validate our approach through sim-
ulated tasks of scooping and planar pushing, demonstrating
its effectiveness and scalability for handling multiple objects.
Additionally, we introduce a novel scooping gripper in our
experiments, showcasing its utility in simultaneous multi-
object grasping tasks.

II. ENERGY MARGIN: DEFINITION AND COMPUTATION

This section introduces the concept of energy margin
as a metric for evaluating the robustness of multi-object
manipulation strategies. We define key terms and outline the
computational methods used to quantify the energy margin
within a dynamic manipulation context.

A. Nomenclature: In our framework, we define the config-
uration space (C-space) of a 3D rigid object as X ⊂ SE(3).
The C-space for the robot’s end-effector and surrounding
static obstacles is denoted as Y ⊂ SE(3) × Rnr , where
SE(3) represents the base pose and nr refers to the number
of robot joints. An element x ∈ X represents the position
and orientation of the object, and similarly, y ∈ Y represents
the state of the end-effector. For multi-object manipulation
involving no objects, we introduce a joint state space Z =
Xno ×Ẋno ×Y×Ẏ . The energy function E(z) encapsulates
the total mechanical energy of the system at z.

B. Defining Energy Margin: For a system with an initial
state zinit, we first define a capture set Zcap(zinit) ⊂ Z ,
which considers the objects as dynamically controllable by
the end-effector for achieving specific tasks. Similarly, we
define a task success set Zsuc ⊂ Z , indicating the set of
states symbolizing the objects accomplish the manipulation
objective.

We consider an energy cost field and its correlating proba-
bilistic distribution of the system. Specifically, we sample no

random wrenches from a given probability distribution and
apply them on the no objects at zinit respectively. The system
thus transitions to z0 with energy cost c0. By repeating the
process M times from zinit, the system terminates in a list
of states {z0, ...,zM} with corresponding costs {c0, ..., cM}.
Data pairs in {(z0, c0), ..., (zM , cM )} constitute an energy
cost field that demonstrates the state space reachability
in terms of energy cost from zinit. We can thus build a
probability mass function L : Z → R+ from the energy
cost field, approximating the likelihood of reaching a state
zm ∈ Z with a softmax function,

L(zm) =
e−λ(cm−cmin)∑M

m=0 e
−λ(cm−cmin)

, (1)

where cmin = min0≤m≤M cm and λ is a hyper-parameter.
The approximated likelihood function indicates some states
with lower costs are probabilistically more reachable.

The capture score is defined as the sum of likelihood

Algorithm 1: Compute Performance Scores
1 Initialize, P∞, Zcap(zinit), Zsuc, M
2 ▷ Obtain energy cost field by growing a tree
3 {(z0, c0), ..., (zM , cM )} ← EST(P∞,M)
4 ▷ Approximate probabilistic distribution
5 cmin = min0≤m≤M cm

6 S ←
∑M

m=0 e
−λ(cm−cmin)

7 for m = 1, 2, . . . ,M do
8 L(zm)← 1

S
e−λ(cm−cmin) ▷ EQ. (1).

9 ▷ Compute scores
10 Ωcap(zinit)←

∑M
m=0 δ(z

m ∈ Zcap(zinit)) · L(zm) ▷ EQ. (2).
11 Ωsuc(zinit)←

∑M
m=0 δ(z

m ∈ Zsuc) · L(zm) ▷ EQ. (3).
12 Return Ωcap(zinit), Ωsuc(zinit)

values of samples in a capture set Zcap(zinit),

Ωcap(zinit) =

M∑
m=0

δ(zm ∈ Zcap(zinit)) · L(zm), (2)

where δ(·) is an indicator function that equals 1 if the
condition inside the brackets is satisfied and 0 otherwise.
Similarly, a success score is thus given by

Ωsuc(zinit) =

M∑
m=0

δ(zm ∈ Zsuc) · L(zm), (3)

which is essentially a predictor for fulfilling a task-specific
objective from the state zinit. In practice, we employ kino-
dynamic motion planners rather than repetitive Monte Carlo
rollouts from zinit. Sampling-based kinodynamic motion
planners are in general more time- and memory-efficient
by using strategies such as biased sampling and caching
explored nodes.

C. Computing Energy Margin: To approximate the per-
formance scores, we construct an energy cost field through
kinodynamic tree expansion. Achieving an evenly distributed
sampling of state space around the initial state zinit is critical
for this purpose. Expansive Space Tree (EST) is thereby
selected for its efficacy in promoting uniform distribution
across the state space through inverse density weighting,
unlike Random-exploring Random Tree (RRT), which may
lead to uneven exploration.

We consider a cost-augmented feasible motion planning
problem P = (Ẑ,U , ẑinit, Ẑgoal, Ẑb,Ub, Ĝ). Here, Ẑ =
Zfree×R+, indicating the cost-augmented state space, where
Zfree ⊂ Z is a collision-free space. The system state
space Zfree is augmented by an auxiliary cost variable,
which measures the accumulated cost from the root zinit,
i.e. cost-to-come. U is the control space, where a control
input u =

[
f1, τ 1, ...,fno

, τno

]
refers to no wrenches

(force f i applied at the i’th object’s CoM and torque τ i),
mimicking an external perturbation in the predictive model.
ẑinit = (zinit, 0), referring to the augmented root state.
The augmented goal set Ẑgoal = Z∞ × R+ encompasses
an infinitely far away goal set Z∞ ⊂ Z . The augmented
state constraint set is denoted by Ẑb = Zb × R+, with
unconstrained kinematics Zb = Zfree. Ub is the set of control
constraints and Ub ⊂ U . Ĝ refers to the augmented dynamics



TABLE I: Comparison of performance scores w/o positional perturbation.
tasks # objects capture score AP capture score success score AP success score

true state perturbed state error true state perturbed state error
Pushing 10 1.00 0.96 ± 0.01 -0.04 ± 0.32 0.98 0.97 ± 0.04 -0.04 ± 0.16
Scooping 5 0.96 0.79 ± 0.03 -0.00 ± 0.11 1.00 0.98 ± 0.02 -0.01 ± 0.13

given by

ẑ′ =

[
z′

c′

]
=

[
G(z,u)
Q(z,u)

]
. (4)

The dynamics is subjected to z′ = G (z,u), which is implic-
itly enforced in Pybullet. Q (z,u) denotes the incremental
cost,

Q(z,u) = |Wext(z, G(z,u))| (5)
= |E(G(z,u))− E(z)−Wfri(z, G(z,u))|. (6)

We represent the incremental cost by the absolute value of
the external work Wext(z, G(z,u)). Wfri(z, G(z,u)) repre-
sents the work done by friction when the system transitions
from z to G(z,u). Therefore, the cost-to-come cm of a node
zm is given by

cm =

N−1∑
i=0

Q(zi,ui), (7)

where zi is the parent node of zi+1, z0 = zinit, zN = zm.

As detailed in Algo. 1, EST terminates after growing M
nodes in the tree (Line 2-3). We thus obtain an energy
cost field of M state-cost pairs, {(z0, c0), ..., (zM , cM )}. We
thereafter approximate the probabilistic distribution (Line 4-
8) and compute the scores Ωcap(zinit) and Ωsuc(zinit) (Line
9-11) following (1)-(3).

D. Representing High-Dimensional State Space: To effec-
tively manage the high-dimensional state space of multiple
objects, Xno × Ẋno , especially when dealing with large
numbers of objects, we utilize a minimum-volume enclosing
ellipsoid to represent the objects within the workspace. This
approach is inspired by human intuitive strategies, such as
how one might handle a cluster of objects with a broom[19],
focusing primarily on the centroid and overall spread rather
than individual details. This representation is particularly
applicable when the objects’ scale is significantly smaller
than that of the end-effector.

The computational model employs Khachiyan’s algorithm
to determine the minimum bounding ellipsoid of the centers
of mass (CoM) for the no objects, denoted as {r1x, . . . , rno

x }
[20]. This compact convex set, characterized by ellipsoid
radii, central position, and orientation, reduces the dimen-
sionality of the representation. Such a low-dimensional
model is predicated on the observation that objects grouped
under a common ellipsoidal envelope might tend to behave
uniformly under manipulation [1]. Therefore, we hypothesize
that different states of objects, {x, ẋ} ∈ Xno ×Ẋno , sharing
the same ellipsoidal parameters, may demonstrate compa-
rable robustness metrics (energy margin). The efficacy and
validity of this ellipsoidal representation and its implications
on robustness will be further examined in the subsequent
section.

III. EVALUATION

A. Task Description: We have designed two tasks, planar
pushing and scooping from a table, to evaluate our proposed
method (see Fig. 1-A).

1) Planar Pushing: This task involves the planar manipu-
lation of several objects on a horizontal plane, pushing them
towards a wall. Success is defined as achieving a state z ∈
Zsuc, where Zsuc = {z ∈ Z : rix ∈ Rsuc,∀i ∈ {1, ..., no}}.
Here, rix represents the center of mass (CoM) position of
the i’th object. Rsuc ⊂ R2 is a designated area near the
wall that constitutes the task success region (Fig. 1-B). The
capture set, Zcap(zinit) = {z ∈ Z : rx ∈ Rcap(zinit),∀i ∈
{1, ..., no}}, includes states where all objects’ CoM positions
are within a specific workspace region, Rcap(zinit), shaped
like a circular sector swept by the end-effector based on its
current instantaneous rotation center.

2) Scooping from a Table: This task involves using a
linear scoop gripper to lift several boxes from a table surface.
The gripper, powered by a Qbrobotic Qbmove actuator[21],
features variable stiffness for adaptive gripping. It employs
a double parallelogram mechanism on each side to ensure
a parallel closing of the fingers without necessitating move-
ment of the robot arm. It uses small RC servos to finely
adjust the scoop position for either sliding under objects
or achieving precision grasps. Success is defined when all
boxes, each with an edge length of 1 cm, are elevated at least
5 cm above the table surface without any boxes slipping or
falling from the gripper. A successful capture occurs when
boxes remain on the gripper’s flat fingertips.

B. Data Generation and Implementation: We collected
trajectories and frame-by-frame system states to compute
energy margins offline and to compare them with ground-
truth labels for robustness and success (Fig. 1-A).

1) Ground-Truth Data Generation: For each task, we
generated and recorded 20 trajectories in the simulation
by randomizing the initial state of objects and the friction
coefficient. From each trajectory, 10 frames (K = 10) were
selected evenly, and the system states zk, k ∈ {1, ...,K}
were recorded. A trajectory is labeled as successful (1) if
the task objective is achieved in the last recorded frame,
i.e., zK ∈ Zsuc, otherwise it is labeled as unsuccessful (0).
Similarly, a frame state zk is labeled as captured (1) if it
is contained within the capture set Zcap(zk′) for subsequent
frames k′ ∈ {k, ..., k + k̂}.

2) Implementation Details: Using Algorithm 1, we com-
puted Ωcap(zk) and Ωsuc(zk) for each recorded state zk

across all trajectories. These scores were compared with
the ground-truth labels using Average Precision (AP), which
indicates performance across classification thresholds. To
assess the ability to predict task success, we introduced a
trajectory-level score, Ωsuc(z, k̄), calculated as a weighted
average of the success scores Ωsuc(zk) for the last k̄ states,
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Fig. 2: AP of the performance scores and runtime of the algorithm
with respect to the number of objects no. Runtime refers to the
elapsed time of Algo. 1 given 300 iterations in EST. AP and runtime
are computed given the 20 trajectories of the pushing task.

with weights increasing from k = 1 to k = k̄. This
approach resulted in a dataset of 200 state-level data points
(Ωesc (zk) ,Ωcap(zk)) and 20 trajectory-level data points
Ωsuc(z, k̄) per task, each with corresponding success and
capture labels.

C. Robustness against Uncertainty: We conducted an
evaluation to assess the robustness of our performance met-
rics in the presence of object position errors, simulating
uncertainties in the perception module. Perturbed positions
{r̂1x, ..., r̂

no
x } were resampled on or inside the minimal

ellipsoid bounding the objects, while the object velocities
were set to 0 in the perturbed state. For each task, we
computed the Average Precision (AP) for the performance
scores Ωcap and Ωsuc given ground-truth object positions (true
state) and perturbed positions (perturbed state) (Table I).
The score errors were calculated as the differences between
the perturbed and true state scores across all data points in
the 20 trajectories. The results indicate a strong predictive
capability of our metrics with ground-truth object positions,
and promising predictions even with perturbed object states.
The slightly inferior prediction performance of Ωcap in the
scooping task may stem from the empirical definition of
the capture set Zcap. Nevertheless, these results suggest that
the ellipsoidal representation has the potential to mitigate
the challenges of the curse of dimensionality and perceptual
uncertainty in our framework.

D. Ablation Study on Number of Objects: The main results
depicted in Fig. 2 reveal two key findings: 1. The runtime
exhibits a linear increase with the number of manipulated
objects, no. 2. Despite the increase in state space dimen-
sionality, our framework maintains strong predictive power.
This indicates its scalability and effectiveness in handling
scenarios with varying numbers of objects.

IV. CONCLUSION

This workshop contribution has introduced a method
for quantifying the robustness of simultaneous multi-object
manipulation using energy margins calculated through a
kinodynamic motion planning algorithm. While effective, our
approach is limited in that it depends on precise system
modeling and the computational intensity of dynamic sim-
ulations. Moving forward, we aim to apply our robustness
characterization in real-world robust manipulation planning

by integrating a heuristic-guided action sampler module
into the current framework. Additionally, we are exploring
the potential of form-behavior co-design for the scooping
gripper, where energy margins are utilized as a behavior
quality measure within the design optimization process.
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