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Abstract— We introduce the sequential multi-object robotic
grasp sampling algorithm SeqGrasp that can robustly syn-
thesize stable grasps on diverse objects using the robotic
hand’s partial Degrees of Freedom (DoF). We use SeqGrasp
to construct the large-scale Allegro Hand sequential grasping
dataset SeqDataset and use it for training the diffusion-based
sequential grasp generator SeqDiffuser. We experimentally
evaluate SeqGrasp and SeqDiffuser against the state-of-the-
art non-sequential multi-object grasp generation method Multi-
Grasp in simulation and on a real robot. The experimental
results demonstrate that SeqGrasp and SeqDiffuser reach an
8.71%-43.33% higher grasp success rate than MultiGrasp.
Furthermore, SeqDiffuser is approximately 1000 times faster
at generating grasps than SeqGrasp and MultiGrasp.

I. INTRODUCTION

Generation of dexterous grasps has been studied for a long
time, both from a technical perspective on generating grasps
on robots [1]–[11] and understanding human grasping [12]–
[15]. Most of these methods rely on bringing the robotic hand
close to the object and then simultaneously enveloping it with
all fingers. While this strategy often results in efficient and
successful grasp generation, it simplifies dexterous grasping
to resemble parallel-jaw grasping, thereby underutilizing the
many DoF of multi-fingered robotic hands [10]. In contrast,
grasping multiple objects with a robotic hand, particularly
in a sequential manner that mirrors human-like dexterity, as
shown in Fig. 1, is still an unsolved problem.

In this work, we introduce SeqGrasp, a novel hand-
agnostic algorithm for generating sequential multi-object
grasps. Our approach utilizes an optimization-based method
to sequentially determine single-object grasp poses using a
subset of the hand’s DoF. As the grasp sequence progresses,
the DoF engaged in previous grasps are frozen, leaving only
the remaining DoF available for subsequent object grasps.
To only engage a subset of the hand’s DoF for each grasp,
we propose an Opposition Space (OS) selection strategy that
enables stable grasping using only a pair of links. Using
SeqGrasp, we construct the large-scale dataset SeqDataset
containing 870K penetration-free Allegro hand grasps across
509 objects, with up to four sequentially grasped objects.
Finally, we train the conditional sequential grasping diffu-
sion model SeqDiffuser on SeqDataset to enable sequential
grasping on novel objects.

We experimentally evaluate SeqGrasp, SeqDiffuser, and
the state-of-the-art simultaneous multi-object grasping
method MultiGrasp [16] in simulation and on physical
hardware. The simulation results revealed that SeqGrasp and
SeqDiffuser perform on par with MultiGrasp for picking
one or two objects while outperforming it when picking
three to four objects. Moreover, SeqDiffuser demonstrates

Fig. 1: Sequential multi-object grasping.

superior efficiency, generating 256 grasps within one second
compared to approximately 1000 seconds for SeqGrasp and
MultiGrasp. For the real-world experiments, we replicated
the grasp sequences proposed by the methods on a real
Allegro Hand attached to a Franka Panda Robot. These
results align with the simulation findings, demonstrating that
SeqGrasp reaches a 43.33% higher grasp success rate than
MultiGrasp.

Our contributions can be summarized as follows:
• SeqGrasp, a novel hand-agnostic algorithm for sequen-

tial multi-object grasp generation.
• SeqDataset, a large-scale dataset for sequential multi-

object dexterous grasping.
• SeqDiffuser, an efficient conditional sequential grasp

diffusion model.
• Extensive simulation and real-world experiments

demonstrating the feasibility and effectiveness of Se-
qGrasp.

II. RELATED WORK

The work presented here spans dexterous grasping, multi-
object grasping, and datasets for dexterous grasping and we
review these areas below.

A. Dexterous Grasping

Analytical methods. Early research in dexterous grasping
generated stable grasps by optimizing a grasp quality metric
such as the force-closure metric [18], [19]. Although these
methods are theoretically sound, they are computationally
demanding because (i) the many DoF dexterous hands cause
high-dimensional search spaces [20], and (ii) the quality
metrics are expensive to compute [21]. Consequently, some
methods have focused on reducing the search space by
imposing constraints on the hand [22], [23] or restricting it



Dataset Hand Data Collection Objects Obj. Set/Seq. Grasps Strategy Max. Obj. Grasped Open-source

MOG [17] Human&Barrett Sim./Real 11 \ 28K Simu./Seq. \ ✗
Grasp’Em [16] Shadow Sim. 8 36 90K Simultaneous 2 ✓

SeqDataset(Ours) Allegro Sim. 509 2400 870K Sequential 4 ✓*

TABLE I: Multi-object grasping datasets. *Our dataset will be made publicly available upon acceptance.

to joint configuration subspaces [20]. Another line of work
has proposed a computationally cheap differentiable force-
closure estimator [10], [21], which has the advantage of
being hand-agnostic. This work extends the differentiable
force-closure measure from [10] to sequential multi-object
grasping.

Data-driven methods. Recent advancements in machine
learning have significantly improved dexterous grasp genera-
tion [5], [6], [8], [24]. Nowadays, deep generative models can
generate thousands of dexterous grasps on previously unseen
and partially observed objects within seconds [5], [6], [8],
[24], something analytical methods cannot. Still, only a few
data-driven dexterous grasping methods have been developed
for multi-object grasping [16], [25]. In this work, we train a
new diffusion-based sequential multi-object grasp sampler
SeqDiffuser inspired from [5] on our own optimization-
generated sequential multi-object dataset SeqDataset.

B. Multi-Object Grasping

Multi-object grasping presents unique challenges due
to the complex multi-object interactions and the high-
dimensional configuration space spanned by the hand and
the objects. Some prior parallel-jaw multi-object grasping
methods [26], [27] explored multi-object push grasps where
scattered objects are first pushed together to facilitate multi-
object grasping. However, these methods are limited by their
reliance on simple shape primitives and parallel-jaw grippers.
In comparison, our work can handle objects of diverse shapes
and sizes.

A few works have addressed dexterous multi-object grasp-
ing [16], [25], [28] where [16] targets simultaneous multi-
object grasping while [25], [28] targets sequential multi-
object grasping. Li et al. [16] proposed MultiGrasp a two-
stage simultaneous multi-object dexterous grasping frame-
work where a generative grasp sampler proposed poses to
simultaneously pick many objects, followed by a learned
policy for executing the pick. The main limitation of [16]
is that objects must be spatially close and of similar size
and shape. In comparison, our method can handle scattered
objects of different shapes and sizes by sequentially picking
one at a time. The other works that do sequential multi-object
grasping [25], [28] restrict the grasping to a maximum of two
objects [25] or to primitive object shapes such as cylinders
or spheres [28]. In comparison, our method can handle up to
four objects of complex shapes and sizes. We also use our
method to collect the largest sequential multi-object grasping
dataset to date.

C. Datasets for Dexterous Grasping

Large-scale dexterous grasp datasets [7], [10], [16], [17],
[24], [29]–[31] have significantly advanced the training of

data-driven dexterous grasping methods. However, most of
these datasets target single-object grasping [7], [10], [24],
[29]–[31], with only a few for multi-object grasping [16],
[17]. As shown in Table I, these existing multi-object datasets
are small and predominantly focus on simultaneous rather
than sequential grasping. Therefore, we collect the new large-
scale sequential multi-object grasping dataset SeqDataset
using our method SeqGrasp. SeqDataset is, to date, by far
the largest multi-object grasping dataset.

III. PROBLEM FORMULATION

The problem addressed in this work is sequential multi-
object grasping, which we define as follows:

Definition 1 (Sequential multi-object grasping). A sequential
multi-object grasp is a grasp where one object is grasped at
a time using a subset of the dexterous hand’s DoF, while
previously grasped objects, if any, remain fixed to the hand.

To contrast, simultaneous multi-object grasping addresses
how to grasp multiple objects simultaneously, typically uti-
lizing all the DoF of the hand [16].

We formulate the sequential multi-object grasping problem
as generating a sequence of N grasps G = {gi}Ni=1 for
picking a sequence of N objects O = {Oi}Ni=1, where each
gn ∈ G is restricted to a specific subset OSn of the hand’s
total DoF and N ≥ 2. Mathematically, this can be described
as

gn = argmin
gn

E(gn,On,Gn−1, On−1,OSn),

∀n = 1, . . . , N, (1)

where Gn−1 = {gi}n−1
i=1 , On−1 = {Oi}n−1

i=1 , G0 = ∅,
and O0 = ∅. E in Eq. 1 is a differentiable function that
quantifies how well grasp gn can pick object On with the
DoF OSn given all previously generated grasps Gn−1 and
objects On−1.

In this work, we represent OSn as an opposition space
(Section IV-A), each object O ∈ O as a triangular mesh, and
each grasp g ∈ G as a vector g = [p, r,θ] ∈ R9+K , where
p ∈ R3 is the hand’s base position, r ∈ R6 is the hand’s
base orientation in a 6D continuous reprsentation [32], and
θ ∈ RK is the K-dimensional hand joint angles which are
16 for the Allegro Hand. We assume the shape of all objects
in O to be fully known. Next, we will introduce SeqGrasp
our algorithm for solving Eq. 1.

IV. SEQUENTIAL GRASP GENERATION

Here, we present Algorithm 1 for sequential grasp gener-
ation. It includes (i) an opposition space selection strategy
(Section IV-A), (ii) an optimization-based grasp synthesis



Algorithm 1: SeqGrasp
Input : Object sequence O, OSes OS, Nstep, and paccept.
Output: The optimized grasp sequence G∗n.

1 n = 1;
2 while OS ̸= ∅ and n ≤ N do
3 OSn ∼ U(OS);
4 {xj}2j=1 ∼ U(Sn);
5 for s = 1 to Nstep do
6 ∆ = ∂E(gn,On,Gn−1,On−1, {xj}2j=1)/∂gn;
7 gn ← MALA(gn,Jn,∆) ;
8 {xj}2j=1 ∼ f(Sn, paccept);
9 end

10 OS ← OS \ OSn;
11 for OSj ∈ OS do
12 Jj ← Jj ⊙ (1− Jn);
13 if Jj = 0 then
14 OS ← OS \ OSj ;
15 end
16 end
17 n += 1;
18 end

method (Section IV-B), and (iii) an energy-based cost func-
tion (Section IV-C). Fig. 2 shown an example of running
Algorithm 1 to grasp three different objects with three
different dexterous hands.

A. Opposition Space Selection Strategy

The primary objective in sequential multi-object grasping
is to maximize the hand’s remaining DoF after each grasp.
For this purpose, we propose a grasp planning strategy
guided by OSes [14], [28], [33], [34]. An OS is a functional
subspace within the hand’s kinematic structure formed by
pairs of opposing surfaces (such as fingertips, lateral surfaces
of fingers, or palm surfaces) along with the joints that control
these surfaces [28]. It represents regions where opposing
forces can be applied to create stable grasps. The number of
OSes is hand-dependent and varies based on the kinematic
structure. Fig. 3a shows the seven different OSes for the
Allegro Hand.

Mathematically, each opposition space can be represented
as a pair OSi = {Ji,Si}, where Ji ∈ {0, 1}K is a binary
vector indicating which joints are involved in controlling the
opposition space, and Si ∈ R3×Mi represents the 3D points
on the hand where opposing forces can be applied. Fig. 3b
shown an example of two different Si for the Allegro Hand,

Fig. 2: Multi-object grasping visualizations for differ-
ent hands. From left to right: Allegro Hand, Shadowhand,
MANO.

where palm and pad oppositions have contact points located
on the inner surfaces of fingers and palm and side oppositions
have contact points on the fingers’ lateral surfaces.

Let OS = {OSi}Li=1 be the set of all OSes. Given this set,
Algorithm 1 samples a random OS from it (Line 3) and uses
it for subsequent grasp generation (Section IV-B). Once grasp
generation is complete, the sampled OS can no longer be
used and is thus removed from the available OSes (Line 10).
Ji of all the remaining OSes are also updated by zeroing
out the joints used in OSn (Line 12). Subsequently, all
OSes with J = 0, meaning that no more controllable joints
exist, are removed (Line 14). For instance, in the case of the
Allegro Hand, if the thumb-index OS is selected, then both
the thumb-palm and index-palm OSes become unavailable
due to shared joint constraints.

B. Optimization-based Grasp Generation

The next step in the algorithm (Lines 5-9) is to generate
a stable, physically plausible, and collision-free grasp that
respects the sampled OSn. To achieve this, we formulate E
in Eq. 1 as an energy function (Section IV-C) and numer-
ically optimize it using the Metropolis-Adjusted Langevin
Algorithm (MALA) [35] (Line 7).

In robotic grasping, MALA has been used to optimize
single object grasps gn by iteratively refining pn, rn and
θn according to Langevin dynamics [10], [21]. However, we
must adapt MALA to sequential multi-object grasping. To
this end, we propose a new grasp as ĝn ← gn−γ [1,Jn]⊙∆,
where γ is the step size, 1 ∈ R9 is a padding vector to
align the length of J with g, ∆ = ∂E/∂gn is the energy
gradient, and ⊙ is the element-wise (Hadamard) product. ĝn
is accepted if α ≥ u, where u ∼ U([0, 1]) and

α =
E(ĝn,On,Gn−1,On−1, {xj}2j=1)

E(gn,On,Gn−1,On−1, {xj}2j=1)
. (2)

The above procedure is repeated for a fixed number
of steps where, at each step, {xj}2j=1 is re-sampled with
probability paccept (Line 8). This resampling process helps
accelerate convergence and escape from local minimas [10],
[21].

(a) (b)

Fig. 3: (a) Grasps using all seven OSes. From left to right,
first row: middle-ring, index-middle, and thumb-index, sec-
ond row: ring-palm, middle-palm, index-palm, and thumb-
palm. (b) Visualization of contact point candidates on
Allegro Hand surface. Cyan and pink points denote palm
opposition and side opposition contacts, respectively.



(a) (b)

Fig. 4: (a) Initialization. The initial grasp configurations are
randomly sampled on the expanded convex hull of the object
(bottle) while the previously grasped object (ball) remains in
the hand. (b) Optimization. During optimization, the grasp
is incrementally refined, ultimately securing the target object
using the ring-palm OS.

We initialize gn at a randomly sampled position on the
expanded convex hull of the target object On as exemplified
in Fig. 4a,. If n = 1, then θ1 is set to a natural open-hand
and collision-free posture, while for n ≥ 2, θn = θn−1. A
visual example of the optimization process when grasping a
second object is shown in Fig. 4b.

C. Energy Function

Numerically optimizing the energy function in Eq. 1
should result in stable, collision-free, joint-respecting, and
OS-respecting grasps. We design the following energy func-
tion to capture all of these behaviors

E = wT
[
Efc Edis Ehop Ehsp Ejoint Eoop

]T
, (3)

where w ∈ R6 is a weight vector controlling the relative
importance of the force-closure Efc, contact distance Edis,
hand-object penetration Ehop, hand self-penetration Ehsp,
joint limits Ejoint, and object-object penetration Eoop energy
terms.

The force-closure term (Efc) encourages the grasp to be in
force-closure equilibrium [36]. Following [10] and assuming
zero friction and uniform contact force magnitudes, we
define it as

Efc({xj}2j=1) = ∥Gc∥2, (4)

where c = [cT1 , c
T
2 ]
T ∈ R6×1 represents the concatenated

contact normals at each contact point {xj}2j=1. G is defined
as:

G =

[
I I

[x1]× [x2]×

]
, (5)

where I represents the identity matrix, and [xj ]× (1 ≤ j ≤ 2)
denotes the skew-symmetric matrix formed from the contact
point xj .

The contact distance and penetration terms (Edis & Ehop)
encourage the hand-object contacts to occur close to the
object surface without penetrating it. The contact distance
is mathematically defined as

Edis({xj}2j=1,On) =

2∑
j=1

d(xj ,On), (6)

where d(xj ,On) = minv∈On ∥xj − v∥2 is the shortest
point-mesh distance. Similarly, the hand-object penetration
term is defined as:

Ehop(gn,On) =
∑

v∈Vhop(Hg,On)

d(v,On), (7)

where d(v,On) = minv1∈On
∥v − v1∥2 and Vhop(Hg,On)

is the set of points on the hand surface pointcloud
Hg ∈ R3×Mh that penetrate the object On.

The self-collision and joint limit terms (Ehsp & Ejoint)
encourage physical feasibility. We define these as

Ehsp(gn) =
∑

v1,v2∈Vhsp(Hg),v1 ̸=v2

max(∥v1 − v2∥2, 0), (8)

Ejoint(gn) = ∥(θ − θupper)+∥1 + ∥(θ
lower − θ)+∥1, (9)

where Vhsp(Hg) denotes all surface points of the hand that
are self-penetrating, (·)+ denotes the element-wise operation
max(·, 0), and θupper and θlower denote the upper and lower
limits of all joints.

Finally, the term (Eoop) minimizes object-object penetra-
tion. It is defined as

Eoop({Oi}ni=1) =

n−1∑
i=1

∑
v∈Voop(Oi,On)

d(v,On), (10)

where d(v,On) = minv1∈On
∥v − v1∥2, and Voop(Oi,On)

are the inter-penetrating surface points between the previ-
ously grasped object Oi and the current object On.

V. DATASET GENERATION

We use SeqGrasp to generate our large-scale dataset
SeqDataset containing 4.9 million sequential Allegro Hand
grasps on over 509 objects from DexGraspNet [10]. Each
object is resized to fit within the Allegro Hand by scaling
its axis-aligned bounding box to be between 0.06 and 0.10
meters. Then, from the 509 resized objects, we generate 600
unique object sets containing four objects each. The objects
in these sets are randomly permuted four times, resulting in
2,400 unique object sequences.

We run Algorithm 1 on the 2,400 unique object sequences
with w = [50, 50, whop, 5, 1, 5]

T , where whop, that penalizes
hand-object penetration, grows linearly from 5 to 5e2. The
optimization runs for 6,000 iterations per grasp. We validate
the generated grasp sequences in the physics simulator Isaac
Gym following the setup in [10]. This setup initializes all
object densities to 500 kg/m3, the friction coefficient to
2.0, the hand to the generated grasp configuration, and
objects as free-floating. Then, the hand closes until contact is
established with the object, which happens when the distance
between the hand and the object is less than 2 mm. Finally,
a grasp stability test is evaluated by linearly applying an
acceleration of 9.8 m/s2 in all six orthogonal directions
for 100 consecutive simulation steps. A grasp sequence is
successful if all grasped objects remain in contact with
the hand after the grasp stability test and the maximum
penetration depth is less than 1 cm. Otherwise, the grasp
sequence is a failure. This procedure ultimately produced 4.9



OSes Success Total Success Rate (%)
Middle-Ring 100.83 704.97 14.30
Index-Middle 97.43 700.90 13.90
Thumb-Index 97.29 1691.41 5.75

Ring-Palm 147.33 323.31 45.57
Middle-Palm 152.77 404.84 37.74
Index-Palm 194.13 546.60 35.52

Thumb-Palm 85.86 485.80 17.67

Num. Obj. Grasped Consumed Total Consumed Rate (%)
One 0.00 444.72 0.00
Two 9.75 251.52 3.88

Three 69.20 139.31 49.68
Four 40.09 40.09 100.00

TABLE II: Statistics of SeqDataset. All numbers of grasps
are shown in thousand.

million grasps, of which 870K (17.82%) were successful.
Only successful grasps were retained in SeqDataset. The
entire data generation process requires approximately 2,500
GPU hours on an NVIDIA A1001.

The statistics of SeqDataset are presented in Table II.
The results demonstrate that grasps using palm opposition
achieved significantly higher success rates, suggesting that
these OSes are important in sequential multi-object grasp-
ing. Notably, grasps using thumb-index and thumb-palm
OSes display lower success rates than other OSes, which
deviates from previous research findings that underscore
the thumb’s dominant role in human hand manipulation
tasks [37]. We hypothesize that this discrepancy may stem
from the biomechanical differences between the Allegro and
the human hand. Finally, SeqDataset’s grasp consumption,
which indicates no more available OSes (OS = ∅), aligns
with its objective of supporting multi-object grasping, with
a significant portion of cases (96.12%) showing potential
for sequential grasping of three to four objects, indicating
efficient utilization of the hand’s DoF.

VI. CONDITIONAL SEQUENTIAL GRASP DIFFUSER

Finally, we introduce SeqDiffuser, a diffusion-based se-
quential grasp generation method trained on SeqDataset. The
architecture of SeqDiffuser is similar to the sampler from [5],
with the distinction that SeqDiffuser is also conditioned on
the OS to enable sequential multi-object grasping.

For generating the grasp gn on the n-th object On, we
first sample OSn ∼ OS . The selected OS is encoded as a
one-hot feature vector fn ∈ {f i}Li=1. This feature vector is
concatenated with the grasp gn forming the augmented grasp
representation g̃n = [fn,pn, rn,θn]. Of all the elements in
g̃n,

we only want to diffuse pn, rn, and the subset of θ that
corresponds to OSn, i.e., Jn. Therefore, we create the binary
diffusion selection vector kn = [0,1,Jn], where 0 ∈ RL
and 1 ∈ R9. Note that in the following, the subscript t of
gt denotes the timestep in the diffusion process, while the
sequential grasp step n is omitted from in g̃n and kn for
clarity.

1Due to this computational overhead, we do not generate a dataset
for MANO nor Shadow hand. However, we will make the code publicly
available for others to create such datasets.

The forward process for adding noise to a successful grasp
g̃0 over T timesteps is

q(g̃1:T |g̃0) =

T∏
t=1

q(g̃t|g̃t−1), (11)

q(g̃t|g̃t−1) = N (g̃t;k⊙
√

1− βtg̃t−1, βtI), (12)

where βt is the scheduled noise variance at time step t. To
reconstruct the original g̃0 from g̃T , SeqDiffuser learns the
reverse diffusion process by estimating the Gaussian noise
at each step t and progressively removing it:

pψ(g̃0:T |hO) = p(g̃T )

T∏
t=1

pψ(g̃t−1|g̃t,hO), (13)

pψ(ĝt−1|g̃t,hO) = N (g̃t−1;k⊙ µ̂ψ(g̃t,hO, t),

Σ̂ψ(g̃t,hO, t)), (14)

where µ̂ψ(g̃t,hO, t) and Σ̂ψ(g̃t,hO, t) are the learnable
mean and variance of a Gaussian distribution and hO is
the Basis Point Set (BPS) [38] encoded feature of the target
object O. In the forward and reverse processes, noise is only
added or removed at positions where k is nonzero. The loss
function is thereby formulated as:

Lϵ = ||k⊙ ϵ̂t − k⊙ ϵt||2, (15)

where ϵ̂t = ϵψ(g̃t,hO, t) and ϵt are the estimated noise and
ground-truth noise, respectively.

VII. EXPERIMENTS

We experimentally evaluate SeqGrasp and SeqDiffuser in
both simulation and the real world. The specific questions
we wanted to address with the experiments were:

1) How well can SeqGrasp and SeqDiffuser generate suc-
cessful and diverse grasps?

2) What is the difference between simultaneously and
sequentially grasping multiple objects?

3) Are the generated grasps executable on real hardware?

We compare our method to the optimization-based sampler
MultiGrasp from [16], which generates simultaneous grasps
on clustered objects. As such, for MultiGrasp, we must first
sample clustered object configurations and then generate
multi-object grasps directly on the object cluster. In contrast,
SeqGrasp and SeqDiffuser do not require objects to be
spatially close as they generate grasps sequentially based
on previously successful ones. While this comparison is not
entirely fair, we still believe comparing these two strategies
offers valuable insights.

For training SeqDiffuser, we split SeqDataset into an 80%
training set and a 20% test set, ensuring that no training
objects were used in the experimental evaluation. The object
point clouds are obtained by sampling 2048 points on the
object mesh surfaces using Farthest Point Sampling (FPS).



SeqGrasp

SeqDiffuser

MultiGrasp

SeqDataset Grasp’Em

Fig. 5: Qualitative results. For SeqGrasp and SeqDiffuser, we only show consumed grasps, that is, when OS = ∅. For
SeqGrasp and SeqDiffuser, the grasp sequences are visually indicated by a color gradient, transitioning from lighter to darker
shades. In contrast, for MultiGrasp, the color gradient is only used to differentiate the objects.

A. Simulation Experiments

We evaluated all generated grasps in the simulation exper-
iments in Isaac Gym [39]. We used two object sets: (1) all
eight objects from Grasp’Em [16] and (2) a random selection
of eight validation objects from SeqDataset. We randomly
generated ten four-object sequences for each object set, and,
per object, we generated 256 grasps, resulting in 10,240
grasps per method.

We used the following metrics to assess the quality of the
generated grasps:

1) Success rate (SR) in percent: The same success criteria
as described in Section V.

2) Maximum penetration depth (Pene.) in mm: The
maximum interpenetration distance between the hand
and all grasped objects.

3) Diversity (Div.) in radian: Grasp diversity is deter-
mined by calculating the standard deviation of g across
all successful grasps.

4) Efficiency (Eff.) in second: The computational time
required to generate a batch of 256 grasps on an
NVIDIA A100.

The quantitative results are presented in Table III, while
Fig. 5 qualitatively illustrates a few grasps. The results
demonstrate that SeqGrasp achieves the highest success rate
and the lowest penetration depth when grasping two or more
objects. MultiGrasp performs well for one- and two-object
grasps, as it utilizes all of the hand’s available DoF to grasp
the objects. However, because MultiGrasp requires all objects
to be initialized nearby, the success rate of the generated
grasps is susceptible to the initial object placements. In
contrast, SeqGrasp and SeqDiffuser do not suffer from this
limitation.

We observe a significant performance drop when tran-
sitioning from three-object to four-object grasps across all
methods. We hypothesize that this decline occurs because
the three previously grasped objects occupy substantial space
within the Allegro Hand, pushing the fourth object grasp to
the limits of the hand’s kinematic redundancy. Additionally,

SR ↑ Pene. ↓ Eff. ↓ Div. ↑

Method SData G’Em SData G’Em Avg. Avg.

MulG-1 66.84 65.39 1.14 1.27 600 0.284
SeqD-1 46.95 45.23 5.55 5.59 0.8 0.321
SeqG-1 50.04 40.78 1.73 2.16 900 0.332

MulG-2 22.46 16.48 2.30 2.83 750 0.347
SeqD-2 18.83 23.00 5.84 6.28 0.8 0.359
SeqG-2 21.21 32.03 2.14 1.78 900 0.367

MulG-3 10.78 3.55 3.39 4.04 900 0.340
SeqD-3 11.05 9.22 5.93 6.47 0.8 0.334
SeqG-3 19.49 21.05 2.23 2.23 900 0.349

MulG-4 0.90 0.47 5.17 6.27 1000 0.329
SeqD-4 3.01 1.68 6.18 6.69 0.8 0.293
SeqG-4 2.93 5.04 2.70 2.62 900 0.312

TABLE III: Simulation results. MulG, SeqG, SeqD, G’Em,
and SData are short the MultiGrasp, SeqGrasp, SeqDiffuser,
Grasp’Em, and SeqDataset, respectively. The −i following
the method name denotes the number of objects used for
grasp generation. ↑(↓), the higher (lower), the better.

as the number of grasped objects increases, object-object
interactions grow exponentially, making the task consid-
erably more challenging, a finding also reported in [16].
Nevertheless, SeqGrasp demonstrates superior performance
in scenarios involving three or more objects.

Another notable observation is that SeqDiffuser generates
grasps with high penetration, which aligns with previous
work on single object diffusion-based grasp sampling [5].
Still, SeqDiffuser is valuable because it generates grasps 750-
1250 times faster than SeqGrasp and MultiGrasp.

B. Real-World Experiments

To address the final question, we evaluated the stability
of the generated grasps on a real Allegro Hand mounted
to a Franka Emika Panda robotic arm. For the evaluation,
we 3D printed the same eight SeqDataset test objects from
the simulation experiments. The printed objects are shown in
Fig. 6. We applied a silicone gel coating to the object surfaces
and attached an anti-slip grip to the palm to increase friction.



Fig. 6: Left: Printed object set with silicone gel coating
over the surface. Right: The stability test.

Real exp. SeqG-3 SeqG-4 SeqD-3 SeqD-4 MulG-3 MulG-4

Succ. trials 6/10 6/10 2/10 1/10 2/10 0/7
Succ. objects 24/30 33/40 20/30 21/40 11/30 12/28

TABLE IV: Real-world experimental results. Succ. trials
mean successful trials and succ. objects mean how many
objects were still grasped even if the trial failed.

We followed the procedure outlined in [28] to replicate the
grasp on the real hardware. This procedure involves position-
ing each object as closely as possible with its generated pose
and then closing the relevant joints of the hand to retain the
objects. For grasps with severe penetration issues, we placed
the object in the closest feasible real-world position. We only
evaluated three- and four-object grasps. For MultiGrasp and
SeqGrasp, we replicated the successful grasps with the lowest
energy, while for SeqDiffuser, we randomly chose one of the
generated grasps.

We evaluated the grasps with the grasp stability test shown
in Fig. 6. In this test, the arm was first moved to a holding
position with the palm facing downward. Next, the arm
moved left-to-right, and then the last joint rotated ±90°. A
trial is considered successful if all objects remain grasped.

The experimental results are presented in Table IV. Similar
to the simulation results, SeqGrasp outperformed SeqDif-
fuser and MultiGrasp in both three-object and four-object
grasping tasks, achieving an average success rate of 60%.
The primary factor contributing to SeqDiffuser’s low success
rate (15%) was significant object interpenetration in the

SeqGrasp MultiGrasp SeqDiffuser

Fig. 7: Grasp replication on real hardware. First row:
three-object grasp, second row: four-object grasp.

generated grasps, which meant that the closest physically
feasible grasp replicable on the real hand differed substan-
tially from the intended configuration. MultiGrasp, with an
average success rate of (12%), mainly failed because the
stability of the generated grasps relied on many object-object
contacts, which are sensitive to minor object displacements.
This resulted in frequent failures, particularly in four-object
grasping trials where MultiGrasp achieved no successful
trials and was even unsuccessful in finding solutions in three
trials, which is why the last column in Table IV is seven and
not ten. If we also count these as failed trials, the average
success rate for MultiGrasp decreases to 10%.

Our real-world experiments highlight the robustness of
sequential grasping as a strategy for dexterous multi-object
manipulation. By generating grasps iteratively and inde-
pendently of object proximity, SeqGrasp and SeqDiffuser
mitigate the challenges posed by object interactions, making
it a more reliable and practical approach for real-world
applications.

VIII. LIMITATIONS

Although both SeqGrasp and SeqDiffuser can produce
high-quality and diverse grasps, the generated grasps rep-
resent only a subset of possible multi-object grasp solutions.
Specifically, our solution relies on only one or two fingers for
a grasp. In contrast, humans can flexibly adjust their fingers
and distribute space within the hand to grasp objects of
varying sizes, shapes, and weights. Moreover, our approach
does not account for object sequencing, whereas humans may
prefer a specific order to facilitate multi-object grasping.
Addressing these limitations is an exciting future research
direction.

IX. CONCLUSION

We proposed SeqGrasp, an algorithm for sequentially
grasping multiple objects with a dexterous hand. SeqGrasp
combines OSes and differentiable-force closure to generate
stable grasps that maximize the hand’s remaining DoF after
each grasp. Using SeqGrasp, we constructed SeqDataset,
currently the largest sequential grasping dataset, comprising
870K validated grasps across 509 diverse objects. This
dataset enabled the training of SeqDiffuser, our diffusion-
based sequential multi-object grasp sampler. The experi-
mental evaluations demonstrated that SeqGrasp and SeqD-
iffuser outperformed the simultaneous multi-object grasping
baseline MultiGrasp, achieving an 8.71%-43.33% higher
average success rate. Moreover, SeqDiffuser proved to be
750-1250 times faster at generating grasps than SeqGrasp
and MultiGrasp. In conclusion, this work demonstrated a fast
and stable sequential multi-object grasp generation solution,
which we hope can pave the way for more research in multi-
object grasping.
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