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Abstract— Uncertainties in contact dynamics and object
geometry remain significant barriers to robust robotic
manipulation. Caging mitigates these uncertainties by
constraining an object’s mobility without requiring precise
contact modeling. However, existing caging research has
largely treated morphology and policy optimization as separate
problems, overlooking their inherent synergy. In this paper, we
introduce CageCoOpt, a hierarchical framework that jointly
optimizes manipulator morphology and control policy for
robust manipulation. The framework employs reinforcement
learning for policy optimization at the lower level and multi-
task Bayesian optimization for morphology optimization at
the upper level. A robustness metric in caging, Minimum
Escape Energy, is incorporated into the objectives of both levels
to promote caging configurations and enhance manipulation
robustness. The evaluation results through four manipulation
tasks demonstrate that co-optimizing morphology and policy
improves success rates under uncertainties, establishing caging-
guided co-optimization as a viable approach for robust
manipulation.

I. INTRODUCTION

Robust non-prehensile manipulation under real-world
uncertainties has been a long-standing challenge in robotics.
These uncertainties arise from various sources, including
imperfect sensors and actuators, varying object geometrical
and physical properties, complex contact dynamics, etc [1].
In model-based manipulation planning, discontinuous contact
interactions make it difficult to maintain robustness, as small
deviations in contact conditions can significantly alter system
behavior.

Caging offers a promising approach to mitigating these
uncertainties by constraining an object’s mobility without
requiring precise contact modeling. A manipulator can
act as a set of geometric constraints, forming a “cage”
that constrains the movement of the object [2]. Unlike
force- or form-closure grasps, caging allows for bounded
mobility while ensuring that the object remains under
control, thereby enhancing robustness to geometric and
positional uncertainties. Existing research on caging has
primarily focused on theoretical analysis [3]–[5], robotic
hand design [6]–[8] and manipulation planning [9], [10].
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Fig. 1: We introduce CageCoOpt, a framework that jointly
optimizes manipulator morphology and control policy for caging-
based manipulation. The goal is to push an object (red) to the
target region (green). (a) A non-optimized manipulator (blue)
struggles with pushing the object reliably. Fingertip poking often
fails due to contact slippage, as precise control is required to handle
object shape variations and unmodeled dynamics. (b) Through
CageCoOpt, the manipulator evolves into a partially “cage”-like
morphology, while the policy learns to nudge the object using its
inner surface. The manipulator maintains partially caging the object
and guides it to the goal without reliance on precise contacts. This
co-optimized system adapts to diverse object shapes and external
disturbances, ensuring robust manipulation.

However, the synergy between caging-based morphology
and policy optimization remains an open problem, while
they are strongly connected. The manipulator’s morphology
directly influences feasible control policy, while the policy
must adapt to the constraints and affordances imposed by its
morphology.

In light of this, we introduce CageCoOpt, a hierarchical
framework that co-optimizes the manipulator morphology
and policy for caging-based robust manipulation (Fig. 1). The
framework employs reinforcement learning for lower-level
policy optimization and multi-task Bayesian optimization
for upper-level morphology optimization. To account for
uncertainties, we explicitly incorporate object shape variation
and environmental disturbances into both the learning and
evaluation processes.

Contributions: We integrate Minimum Escape Energy
(MEE), a robustness metric from energy-bounded
caging [10], [11], into the optimization objectives of
the two levels. By embedding MEE in the learning process,
our method encourages caging configurations. Specifically,
the manipulator evolves into a morphology that cages the
object while the policy adapts to maintain this cage. To the
best of our knowledge, this is the first instance in which the
morphology and policy of manipulators are jointly optimized
to facilitate caging-based manipulation. Furthermore, we
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evaluate CageCoOpt in both simulation and real-world
experiments across four non-prehensile manipulation tasks,
such as pushing and scooping. The results demonstrate that
integrating MEE into morphology and policy optimization
consistently improves success rates under uncertainties.
The manipulator with jointly optimized morphology and
policy outperforms its unoptimized counterparts in handling
real-world uncertainties.

II. RELATED WORK

A. Robust Manipulation and Caging

Early work on manipulation robustness explores various
grasp quality metrics, such as grasp wrench space
analysis [12], [13], with a primary focus on prehensile
manipulation tasks [14]. Data-driven approaches also
leverage analytic metrics for planning robust grasps [15]–
[17]. However, robustness in non-prehensile manipulation
remains underexplored. In general, uncertainties in
manipulation arise from various sources, including objects,
the environment, robots, or the interactions between them [1],
[18]. Of particular interest are two challenging types of
uncertainty: object shape variation and unmodeled dynamics.
Object geometric uncertainty stems from the limited sensing
capabilities of robots in unknown environments [19], [20],
while unmodeled dynamics can result from contact dynamics
between objects and obstacles, or from uncertainties in the
physical properties of objects [21], [22].

Caging [2], [3], [23] and energy-bounded caging [4],
[10], [11], [24], a variant of caging that incorporates energy
constraints on the object, provide valuable insights into
addressing these challenges. Caging involves preventing
object escape through geometric constraints without relying
on force or form closure, allowing for the tolerance of
geometric or dynamic uncertainties. In this work, we
take initial steps toward integrating caging-based analytical
metrics into the co-optimization of morphology and policy.
This approach offers a paradigm for applying analytical
manipulation metrics in a data-driven manner to enhance
non-prehensile manipulation performance, complementing
state-of-the-art research on caging for independent robot
design [6]–[8] or manipulation planning [5], [9], [10].

B. Simultaneous Morphology and Policy Optimization

Simultaneous morphology and policy optimization, known
as co-design or co-adaptation of robots, reduces costly
manual hardware design by integrating policy into the
adaptation process. Co-design is a bi-level optimization
problem [25], involving upper-level design and lower-
level control optimization. This approach is computationally
challenging, as each morphological design requires a
unique policy, exacerbating the complexity with increasing
morphology space dimensionality. It has been applied to soft
robots [26], [27], manipulation [28]–[30], locomotion [31]–
[33], and object adaptation [34], [35]. Prior work falls into
hierarchical and integrated approaches. Hierarchical methods
use Bayesian optimization [28], [30], [31], [36], evolutionary
algorithms [27], or generative methods [26], [37] for

morphology optimization, with reinforcement learning [27],
[30] or imitation learning [31] for policy optimization.
Some simplify control as prescribed motions [28],
[34], [37]. Integrated approaches frame co-design as a
joint Markov Decision Process (MDP) [29], [32], [33],
[35], simplifying the pipeline but limiting flexibility by
restricting optimization to a single objective. Notably,
existing co-design methods do not systematically address
robust manipulation under uncertainties. To tackle this,
we propose a hierarchical framework with decoupled
subproblems: a morphology-conditioned control policy is
first learned through reinforcement learning, followed by
efficient morphology optimization using multi-task Bayesian
optimization [38]. This allows for customized objectives,
integrating caging-based robustness metrics independently at
each level.

III. PRELIMINARY

We use the vertical bar | in expressions like f(a|b) to
indicate parameter dependency, meaning f is a function of
a with b as a fixed parameter influencing its behavior.

We begin by revisiting the concept of caging. Sobj
represents a rigid object’s configuration space (C-space).
The free C-space, Sfree, consists of configurations where the
object does not intersect any obstacles or the manipulator.

Definition 1: An object at configuration sobj ∈ Sfree is caged
if it resides in a bounded path component of Sfree.

A caged object is restricted in its movement and
unable to travel freely beyond a certain range from its
initial configuration. Caging has been generalized to partial
caging, which permits escape through narrow free-space
passages [39]. This extends to energy-bounded caging [10],
[11], incorporating both geometric and energy constraints.

Definition 2: In a quasi-static system under conservative
forces, an object at an initial configuration sobj ∈ Sfree
has potential energy E(sobj). The Minimum Escape Energy
E(sobj) is the supremum of energy gain e such that the
path component PCsobj(Se(sobj)) of the sublevel set Se(sobj)
containing sobj remains bounded:

E(sobj) = sup
{
e ≥ 0 : PCsobj(Se(sobj)) is bounded

}
, (1)

where

Se(sobj) = {s ∈ Sfree : E(s) ≤ E(sobj) + e}. (2)

The object is in an E(sobj)-energy-bounded cage [10]. E(sobj)
is defined only if PCsobj(S0(sobj)) is bounded.

The supremum of energy gain e satisfying the condition
in Def. 2, esup = E(sobj), is noted in Fig. 2. It corresponds
to a maximal bounded path component PCsobj(Sesup(sobj))
(blue). The object at configuration sobj is bounded by both
the R2-bowl (obstacle C-space Sobs) and the energy level set
Lesup(sobj), defined as:

Le(sobj) = {s ∈ Sfree : E(s) = E(sobj) + e}. (3)



Fig. 2: Illustration of energy-bounded caging under gravitational
potential energy field g. The energy level set is distributed
horizontally, such as Lesup(sobj). A point-mass object at
configuration sobj ∈ R2 lies inside a R2-bowl (green, Sobs). The
escape path α here has the minimum escape energy E(sobj).

In other words, it is in an “energy-bounded cage” within
the blue region. For any e > esup, the path component
PCsobj(Se(sobj)) of the sublevel set Se(sobj) containing sobj
is unbounded. Intuitively, if an object at configuration sobj
has positive Minimum Escape Energy (MEE), E(sobj) > 0,
it is confined within a region around a local minimum of the
energy function E(s) : Sfree → R. It cannot escape without
an external energy input greater than E(sobj). Otherwise, if
E(sobj) = 0, the object can readily escape from the region.

Efficient sampling-based approaches such as Batch
Informed Trees (BIT*) [40] are used in practice to
approximate a close upper bound of MEE E(sobj).
Specifically, a C-space goal region Sgoal (pink, Fig. 2)
sufficiently far away from the obstacles with relatively lower
energy values is utilized. With the help of it, we search for
geometrically feasible escape paths α from sobj to the goal
region Sgoal with the lowest energy cost. The introduction
of sampling-based approaches for finding the most energy-
efficient escape paths also makes it possible to extend
the assumed conservative forces, such as gravity, to path-
dependent non-conservative forces, such as friction [24].
Please refer to [11], [24] for details. We next describe how
we integrate MEE E(sobj) into both the two levels of our
hierarchical co-optimization framework.

IV. CAGING-GUIDED MANIPULATOR CO-OPTIMIZATION

A. Problem Formulation

Our framework co-optimizes the manipulator morphology
d, and the control policy π, as illustrated in Fig. 3. d in
this paper refers to the morphology of robot end-effectors
or rigid tools that robots use. For a given d ∈ D in the
morphology space D, an optimal policy π∗

d conditioned on
d is learned to maximize the expected cumulative reward
V (π|d). With the policy π∗

d , the morphology d is evaluated
by performing the manipulation task given d and π∗

d and
obtaining a score f(d, π∗

d). Iteratively, we select a different
d ∈ D and repeat this process. Eventually, we obtain the
optimal morphology d∗ with the highest performance score
f . The co-optimization problem can be formulated as below,

d∗ = argmax
d

f(d, π∗
d) (4a)

s.t. π∗
d = argmax

π
V (π|d), (4b)

composed of the lower-level policy optimization (Eq. 4b)
and the upper-level morphology optimization (Eq. 4a). Based
on the formulation above, we consider a more general
circumstance under uncertainties of object shape variations
and unmodeled dynamics. Specifically, we consider the
object shape space H, and the manipulator-object pair δ =
(d, h), h ∈ H. The lower-level V (π|δ) is additionally
conditioned on the object shape h besides the morphology
d. The upper-level score f(δ, π∗

δ ) is a function of the
manipulator-object pair δ ∈ D × H and the optimal policy
π∗
δ conditioned on δ. The optimization objective is the

average score over all the possible object shapes h, i.e.
Eh∼Hf(δ, π∗

δ ). On the other hand, unmodeled dynamics exist
in the manipulation scenario. Following prior works [17],
[24], [41], we treat it as random disturbance forces ϵ ∼
N (0, σ2

ϵ ) applied on the object’s center of mass. The lower-
and upper-level objectives are both conditioned on the
randomized disturbance domain [21]. Therefore, Eq. (4) can
be reformulated as below,

d∗ = argmax
d

Eh∼Hf(δ, π∗
δ |ϵ) (5a)

s.t. π∗
δ = argmax

π
V (π|δ, ϵ). (5b)

This paper argues that integrating MEE into the co-
optimization framework enhances manipulation robustness
under the aforementioned uncertainties. We next discuss how
we solve the bi-level optimization problem in Eq. (5), and
how we integrate MEE into the objectives. In the following,
we use d∗, π∗

δ to denote the best-discovered solutions
obtained from our stochastic optimization algorithms as an
approximation of the global optimality.

B. Lower-Level Policy Optimization

A direct solution to the co-optimization in Eq. (5)
often turns out inefficient, as training a new policy for
each morphology d ∈ D requires extensive environment
interaction. Moreover, training multiple specialists for similar
tasks separately is redundant, as they can share knowledge.
To address this, we decouple the bi-level problem by
first learning a universal policy π∗(st, δ|ϵ). This allows a
single policy to generalize across different morphologies
and object shapes, reducing training costs while maintaining
adaptability. In other words, we solve the lower-level sub-
problem Eq. (5b) once to acquire a policy that adapts to any
(d, h).

Specifically, we formulate this policy optimization sub-
problem as an infinite-horizon MDP

(
S,A,P,R, γ

)
. In each

episode of training, a manipulator morphology d ∈ D and an
object shape h ∈ H is selected at random (Line 4, Algo. 1).
At each timestep t, the agent observes a state st ∈ S, and
takes an action at ∈ A. The environment transitions to st+1

through the transition dynamics P and provides a reward
rt(st, at, st+1|δ, ϵ). The state space S = Sobj × Smnp is
the composite configuration space of the object Sobj and the
manipulator Smnp. The objective is to learn a policy π∗

δ that



Fig. 3: The proposed CageCoOpt framework.

maximizes the expected cumulative reward V ,

V (π|δ, ϵ) = Eπ

[ ∞∑
t=0

γtrt(st, at, st+1|δ, ϵ)

]
, (6)

where γ denotes the discount factor. To enhance the
manipulation robustness, we adopt a reward of the form:

rt = wintrint,t + wsucrsuc,t + wEE(sobj,t), (7)

where rint is a dense intermediate reward guiding progress
toward the goal, rsuc is a completion bonus, and
[wint, wsuc, wE ] is a set of weights. Crucially, we integrate
the Minimum Escape Energy (MEE) E(sobj,t), computed
given the knowledge of the poses st and the geometry δ
of manipulator and object. It drives manipulator and object
into energy-bounded caging configurations. Such partial
enclosure reduces the likelihood of object escape, even under
random disturbances ϵ. Furthermore, a caging configuration
allows bounded mobility of the object inside it, thereby
robust to the uncertainty of object shape variations h ∈
H. Additionally, we employ Proximal Policy Optimization
(PPO) [42] to train this universal policy π∗

δ .

C. Upper-Level Morphology Optimization

The upper-level morphology optimization in Eq. (5a) takes
as input the universal policy π∗

δ from the lower level and
aims to find the best manipulator morphology d∗ ∈ D. For
each manipulator-object pair δ = (d, h), a policy rollout is
performed to evaluate δ in the manipulation scenario. The
computational burden increases as the dimensionality of D
grows. Therefore, we aim at an algorithm with high sample
efficiency rather than naive algorithms such as random search
or grid search within D. Inherently, the upper level is a
derivative-free black-box optimization problem with costly
evaluation function f(δ, π∗

δ |ϵ) and multi-dimensional input
space D ×H. For this purpose, Bayesian optimization with
a probabilistic surrogate model is a good fit. We employ
Multi-Task Bayesian Optimization (MTBO) [38] to solve
it, where the “Multi-Task” refers to multiple object shapes
h ∈ H. As a variant of BO, MTBO utilizes a surrogate
function to approximate the true, computationally expensive

Algorithm 1: Caging-Guided Manipulator
Morphology and Policy Co-Optimization

1 Lower-Level Policy Optimization
Input: Morphology space D, object shape space H, initial

policy π0, maximum iterations Nrl.
2 for n = 0 to Nrl do
3 Randomize initial object and robot state s0
4 Randomize morphology dn ∈ D and object shape

hn ∈ H
5 Run policy πn(st, δn) in environment for Nstep time

steps, where δn = (dn, hn)
6 Update policy πn+1 via PPO
7 end
8 Upper-Level Morphology Optimization

Input: Best universal policy π∗
δ , initial morphology

d0 ∈ D, object shape h0 ∈ H, δ0 = (d0, h0),
maximum iterations Nbo.

9 for i = 0 to Nbo do
10 Compute next evaluation pair

δi+1 ← argmaxδ Θi(δ, f̂i) ▷ EQ. (10), (11)
11 Evaluate performance score f(δi+1, π

∗
δi+1
|ϵ) ▷ EQ. (8)

12 Update GP mean and kernel functions f̂µ,i+1, f̂k,i+1

with (δi+1, f(δi+1, π
∗
δi+1
|ϵ))

13 end
14 Compute best-found morphology d∗ ▷ EQ. (12)
15 return Best policy π∗

δ , best morphology d∗

one. Additionally, MTBO exploits correlations among the
object shapes h, to further enhance data efficiency, allowing
for more effective exploration of the input space D ×H.

Specifically, we define the performance score f as

f(δ, π∗
δ |ϵ) = wEs0 [fsuc(δ, π

∗
δ |ϵ)] + (1− w)Es0 [fE(δ, π

∗
δ |ϵ)],

(8)

where w ∈ [0, 1] balances the success rate fsuc and the
robustness score fE . The robustness score fE is a function
of the average MEE E(st, δ) along a rollout trajectory θ :
[0, T ] → S,

fE(δ, π
∗
δ |ϵ) =

1

T

T∑
t=0

E(sobj,t). (9)

By integrating MEE into the performance score f ,
the morphology d that favors energy-bounded caging
configurations is selected. Additionally, random perturbation
forces ϵ ∼ N (0, σ2

ϵ ) applied on the object persist throughout
the evaluation rollouts, similar to the lower level. The
expectations in Eq. (8) are approximately evaluated as the
mean cumulative scores for a fixed number of policy rollouts
given random initial states s0 ∈ S.

We employ the Gaussian Process (GP) as the surrogate
performance score f̂(δ, π∗

δ |ϵ). It maps δ to its predicted mean
performance score fµ and the corresponding kernel function
fk, i.e. f̂ : δ 7→ (f̂µ(δ, π

∗
δ |ϵ), f̂k(δ, π∗

δ |ϵ)). Specifically, we
use the intrinsic co-regionalization model [43] as the kernel.
It improves sample efficiency by modeling correlations
between morphology d ∈ D and object shapes h ∈ H.

At iteration i, an Upper Confidence Bound (UCB)-
based [44] acquisition score function is employed to predict
the utility of sampling a particular δ based on the current



Fig. 4: Four manipulation tasks detailed in Section V-A. Gravity is
denoted by g.

Fig. 5: Escape paths (green) with minimum escape energy E(sobj).

surrogate model f̂i:

Θi(δ, f̂i) = f̂µ,i(δ, π
∗
δ |ϵ) + λ · f̂k,i(δ, π∗

δ |ϵ). (10)

The weight λ adjusts the exploration-exploitation trade-off.
The acquisition score function is then used as

δi+1 = argmax
δ

Θi(δ, f̂i) (11)

to determine the next best query input δi+1 (Line
10, Algo. 1). We then evaluate the performance
score f(δi+1, π

∗
δi+1

|ϵ) of this query by rolling out with
policy π∗

δi+1
(Line 11) and thereby obtain a new data pair

(δi+1, f(δi+1, π
∗
δi+1

|ϵ)). The data pair is used for updating
the surrogate mean and kernel functions (fµ,i+1, fk,i+1)
(Line 12). Given the last fit of the surrogate f̂Nbo at iteration
Nbo, we determine the best-found morphology d∗ (Line 14)
by

d∗ = argmax
d

Eh∼H

[
f̂µ,Nbo(δ, π

∗
δ |ϵ)

]
. (12)

Together with the lower level, the CageCoOpt framework
outputs the best-discovered policy π∗

δ and morphology d∗ for
caging-based manipulation.

V. EVALUATION

We design four manipulation tasks (Fig. 4) to answer
several research questions and demonstrate the efficacy of
our proposed approach1.

A. Manipulation Task

The morphology spaces D of the manipulation tasks range
from 1 to 5 dimensions. The action spaces A range from
1 to 6 dimensions. We consider relatively low-dimensional
morphology space D, such as linkage representations
of manipulators, following prior co-design works [29],

1For more details, visit https://sites.google.com/view/robust-codesign/.

[34]. The simple and low-dimensional linkage morphology
space captures the core functionality of manipulators, and
also alleviates the computational challenge for bi-level
optimization problems with high-dimensional morphology
space. Pybullet [45] and Box2D [46] are used for physics
simulation.
Catch: The goal is to design a basket to catch a

falling object under gravity (Fig. 4-a). The manipulator
morphology space is D = {l1, l2, l3, α1, α2}, specifying the
linkage lengths and angles. The action space includes the
basket’s horizontal velocity v1. The object shape space is
H = {circle,square}.
VPush: The goal is to design a symmetric V-shaped tool

to push an object into a circular goal region (Fig. 4-b). The
morphology space includes the opening angle α3. The action
space A is {v2, v3, ω1}, and H = {circle,square}.
Panda-UPush: The goal is to design a U-shaped

manipulator mounted on a Franka arm to push an object
into a circular goal region (Fig. 4-c). The morphology
space is D = {α4, α5, l4, l5}. The action space
contains {v4, v5, ω2}. The object shape space is H =
{circle,rectangle,square,oval,irregular}.
Scoop: In Fig. 4-d, we have a linear scoop gripper with

variable stiffness for adaptive gripping. It employs a double
parallelogram mechanism (hidden in Fig. 4-d) on each side
to ensure parallel finger closing. The goal is to design the
scoop gripper tips for robustly lifting a cube by at least
0.06 m within 1.0 s. The morphology space D includes the
fingertip length l6 and the curvature κ. The action space
is {v6, ω3, v7, ω4}. The continuous shape space contains
l7 ∈ [0.01, 0.02].

Fig. 5 illustrates robust object poses in energy-bounded
caging configurations, exhibiting positive Minimum Escape
Energy (MEE) values. The most energy-efficient escape
paths are highlighted, corresponding to the MEE, where
objects navigate closely around the manipulator edges to
minimize the work required against gravitational forces (a, d)
or frictional resistance (b, c). In practice, MEE in some
tasks is computed analytically. For instance, in Catch, the
minimum escape energy against the gravity is E(sobj) =
mobjgz. mobj is the mass of the object and z denotes the
height difference in Fig. 4-a.

B. Experiments

1. Does the incorporation of MEE improve performance
under uncertainty?

We demonstrate that integrating the caging-based
robustness metric, MEE E(sobj), in the objective functions
does improve the performance both at the lower-level
policy learning and upper-level morphology optimization,
especially in the presence of unmodeled dynamics. We add
random disturbance forces ϵ ∼ N (0, σ2

ϵ ) on the object to
simulate unmodeled dynamics. The success rate serves as
the primary performance metric, where success is defined
as follows: in catch, the object falls into the basket; in
VPush and Panda-UPush, the object reaches the goal
region; and in Scoop, the object is lifted.

https://sites.google.com/view/robust-codesign/
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(w/o) the MEE metric in the RL reward and the disturbances ϵ on the object. Each curve represents the mean over Nseed = 5 random
seeds. The standard deviation shades for curves without training disturbances (w/o dist.) are omitted for visual clarity.

TABLE I: Comparison of MTBO with baselines in morphology optimization.

Method MEE Catch VPush Panda-UPush Scoop N̄roll

MTBO (ours) w/ 0.91± 0.06 0.85± 0.03 0.53± 0.20 0.93± 0.11
650w/o 0.67± 0.17 0.80± 0.07 0.23± 0.17 0.71± 0.36

BO w/ 0.92± 0.08 0.83± 0.09 0.44± 0.11 0.90± 0.07
690w/o 0.75± 0.13 0.83± 0.14 0.22± 0.20 0.77± 0.39

GA w/ 0.91± 0.07 0.79± 0.12 0.53± 0.15 0.91± 0.10
1140w/o 0.69± 0.11 0.82± 0.10 0.26± 0.21 0.73± 0.38

Policy Optimization: The results of RL policy learning
are shown in Fig. 6. Incorporating MEE into the RL
reward (Eq. 7) consistently improves policy performance,
particularly under unmodeled dynamics (w/ dist.). The
inclusion of MEE encourages caging configurations, where
the manipulator partially cages the object, forming energy
barriers that prevent escapes. As a result, disturbances with
energy levels below the minimum escape energy cannot
devastate the energy-bounded cage. Moreover, MEE-based
policies exhibit robustness to object geometric uncertainties,
as caging relies on relaxed geometric constraints rather than
precise contact conditions. This leads to higher manipulation
success rates. The performance in Panda-UPush is lower
than in VPush due to the increased complexity of the
morphology space D and the stricter goal completion criteria.

Morphology Optimization: The first two rows of Table I
demonstrate the impact of integrating MEE into the
performance score f (Eq. 8) at the upper-level morphology
optimization. The data in Table I represent the confidence
threshold of the test success rate Q. The mean Qµ is
computed using the best-found morphologies d∗i from the
last five iterations:

Qµ =

Nseed∑
j=1

Nbo∑
i=Nbo−4

Eh∼H[fsuc((d
∗
i , h), π

∗
δ,j |ϵ)]. (13)

The evaluation policies π∗
δ,j are from the five randomly

seeded models trained at the lower-level RL. MEE is either
incorporated at both levels or excluded entirely. Rollouts are
conducted with the object subjected to unmodeled dynamics
(w/ dist.). The metric N̄roll denotes the minimum average
number of control policy rollouts required for convergence
in morphology optimization.

Results indicate that integrating MEE into the MTBO
performance score f consistently improves success rates,
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w/ or w/o dist. means the inclusion or exclusion of random
disturbance forces on the objects during training, respectively. Each
data point represents the average of 250 rollouts (50 rollouts per
seed, across 5 random seeds corresponding to the 5 RL models
from Fig. 6).

highlighting the advantages of caging-based manipulator
morphology for robust manipulation. Fig. 8 illustrates the
identified morphologies throughout the optimization process,
The results reveal a clear preference for morphologies
that partially cage the object and prevent its effortless
escape. This caging-based strategy significantly enhances
manipulation success across diverse object shapes and in the
presence of unmodeled dynamics.

2. How does unmodeled dynamics affect performance?
We conduct an ablation study to evaluate how unmodeled

dynamics, simulated as random disturbance forces ϵ ∼
N (0, σ2

ϵ ), influence RL model performance (Fig. 7). The
results indicate a general decline in success rate as
disturbance intensity σϵ increases. Models trained with
MEE consistently outperform those without it, regardless of
whether disturbances are present during training. Moreover,
when disturbances are introduced during training (w/ dist.),



Fig. 8: Morphology optimization process. i denotes the iteration
number, and fsuc the test success rate given the manipulator
morphology d. Here, the optimizer is MTBO with MEE.

MEE provides a greater performance boost compared to
training in a disturbance-free environment. This suggests that
the caging-based manipulation strategy, reinforced by the
MEE robustness metric, enhances the manipulator’s ability
to cope with uncertainty.

3. Is MTBO more sample-efficient than the baselines?
We compare MTBO with two baselines: standard BO and

Genetic Algorithm (GA) [47]. For BO, we use a Lower
Confidence Bound acquisition function [48]. For GA, we set
a population size of 4 and a mutation rate of 0.1. In both
methods, morphology d is evaluated across all object shapes
h ∈ H, with success rates averaged over multiple rollouts.
Unlike BO and GA, MTBO selects a specific δ = (d, h)
in each iteration and optimizes by leveraging correlations
between object shapes h. This approach reduces the number
of required rollouts while maintaining high performance.
MTBO achieves better results (Qµ ± Qσ) with fewer
rollouts N̄roll in most environments (Table I), demonstrating
better sample efficiency. We attribute this improvement
to MTBO’s use of Gaussian Processes (GP) to model
correlations between object shapes h, allowing for more
effective exploration. This strategy enhances manipulation
robustness under the uncertainty of object shapes without
significantly increasing computational cost.

4. Do caging-guided co-optimized manipulators improve
real-world robustness?

We conduct a proof-of-concept physical evaluation with
a Franka Emika Panda arm, attaching three manipulators
from our upper-level morphology optimization (Fig.8-c,
Panda-UPush). We chose two representative objects,
circle and square from H, and tracked their poses via
a motion-capture system. Uncertainties primarily arise from
variations in object shape, inaccuracies in contact modeling,
and positioning errors in the motion capture system.

The results, shown in Fig. 9, indicate qualitatively that the
learned policies can transfer from simulation to the physical
robot. Specifically, we observe that the initially narrow,
“chopstick-like” manipulator (Fig.9, a-1) frequently fails to
poke the circular object to the goal due to slippage at contact,
consistent with our failure cases in simulation (Fig.1-a).

Fig. 9: Real-world experiments. The goal regions are shown in blue.

In contrast, the co-optimized manipulators (Fig. 9, b-1,c-1)
more reliably drive both objects to the goal. The interaction
strategy shifts from poking the object with the manipulator’s
distal ends to using the inner surface for continuous nudging,
thereby maintaining a partial cage. The object slides deep
within the partial cage, allowing the manipulator to push
it “blindly” while the object naturally follows without
requiring precise contacts. With finite RL training steps in
practice, the learned universal policy π∗

δ is often suboptimal.
Under this condition, the caging-based strategy (Fig.1-b)
outperforms the contact-dependent one (Fig.1-a), as it is
less reliant on control policies with high contact accuracy.
These results support our simulation findings: co-optimized
morphology and policy enhance robustness against real-
world uncertainties through caging strategies.

VI. CONCLUSION

In this work, we explored the application of caging,
a concept from classic grasp theory, to data-driven
manipulator morphology and policy co-optimization for
robust manipulation. We demonstrated the effectiveness
of the caging-based robustness metric, Minimum Escape
Energy, in designing and controlling manipulators under
object geometric uncertainty and unmodeled dynamics. A
limitation is that the current evaluation still focuses on simple
morphology spaces, leading to morphologies aligning with
human instinct. For future work, we believe extending this
approach to complex morphology spaces will potentially
allow the discovery of novel and even counter-intuitive
robot morphology for robust manipulation. Future work on
real-world experiments can incorporate real-time impedance
adaptation with smoother executions and provide quantitative
evaluations. Additionally, we aim to explore the capabilities
of this framework further in co-optimizing manipulators for
robust manipulation of deformable objects.
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