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Abstract— Robotic manipulation of deformable and fragile
objects presents significant challenges, as excessive stress can
lead to irreversible damage to the object. While existing solu-
tions rely on accurate object models or specialized sensors and
grippers, this adds complexity and often lacks generalization. To
address this problem, we present a vision-based reinforcement
learning approach that incorporates a stress-penalized reward
to discourage damage to the object explicitly. In addition, to
bootstrap learning, we incorporate offline demonstrations as
well as a designed curriculum progressing from rigid proxies
to deformables. We evaluate the proposed method in both
simulated and real-world scenarios, showing that the policy
learned in simulation can be transferred to the real world in
a zero-shot manner, performing tasks such as picking up and
pushing tofu. Our results show that the learned policies exhibit
a damage-aware, gentle manipulation behavior, demonstrating
their effectiveness by decreasing the stress applied to fragile
objects by 36.5% while achieving the task goals, compared to
vanilla RL policies.

I. INTRODUCTION

Deformable and fragile objects manipulation (DFOM)
requires gentle and reliable handling of the object, which
is crucial in applications ranging from food processing and
agriculture to assistive care and surgery [1], [2], [3], [4],
[5]. Manipulation of these objects poses major challenges, as
objects can tear, crack, or bruise under excessive compression
or tension [6], [7]. The difficulty stems from two factors: (i)
complex contact and object dynamics that are hard to model,
making it difficult to assess the internal stress experienced
by the object, and (ii) stringent safety constraints that require
keeping the stress below damage thresholds [8], [9].

The problem of DFOM can be cast as minimizing the
internal stress applied during interaction while still achieving
task goals. Model-based methods approach this problem by
leveraging physical priors and analytical models to explicitly
measure the stress levels [10], [11]. However, such ap-
proaches typically require accurate object models and precise
parameter identification, making them difficult to deploy
in the real world. This motivates the use of reinforcement
learning (RL), which has demonstrated strong performance
in visuomotor control tasks through sim-to-real transfer [12],
[13]. Despite this promise, applying RL to real-world DFOM
remains largely unexplored, especially given the challenge of
ensuring safe stress levels in fragile objects.
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Fig. 1. Overview of our approach to deformable and fragile object
manipulation using only visual input. Our stress-guided RL policy, trained
in simulation, transfers to the real world zero-shot. It enables tasks such
as picking up and pushing tofu without causing damage, in contrast to a
baseline. For visualization, the tofu is dyed blue in real-world experiments.

In this work, we address this gap by introducing a
stress-guided RL framework specifically designed for DFOM
tasks (Fig. 1), instantiated on a standard off-policy RL
method [14]. The policy is trained from point cloud observa-
tions obtained with an RGB-D camera, which capture object
geometry and deformation in a form well suited for sim-
to-real transfer, without requiring precise object models or
additional sensors (e.g., tactile sensors). To explicitly account
for fragility, we design a stress-penalized reward computed in
simulation, which encourages gentle manipulation behaviors
by penalizing actions likely to cause damage. While this
reward captures safety constraints, it inherently conflicts with
task success, making the vanilla RL converge slowly or fail
to converge altogether. To address this, we introduce two
mechanisms that facilitate stable learning: (i) a curriculum
that progresses from rigid proxies to deformable objects, and
(ii) the use of offline demonstrations for policy bootstrapping.
We comprehensively evaluate our method in both simulated
and real-world scenarios. The method demonstrates strong
effectiveness in decreasing the stress applied to the fragile
objects by 36.5% compared to a vanilla RL policy, while
succeeding in the manipulation task.

In summary, our main contributions are:



• We propose the first visuomotor learning framework for
sim-to-real manipulation of 3D deformable and fragile
objects, which explicitly incorporates object fragility
into the learning process.

• We introduce a stress-penalized reward that enables safe
and gentle handling of deformable and fragile objects.

• We incorporate offline expert demonstrations and cur-
riculum to learn from the gentle manipulation behavior
of humans and bootstrap the learning process.

• We demonstrate zero-shot sim-to-real transfer in two
challenging tasks involving picking and pushing tofu
with minimal damage to the object.

II. RELATED WORKS

A. Deformable and Fragile Object Manipulation

Existing approaches to DFOM typically exploit special-
ized hardware, advanced sensing, or policy learning tech-
niques. Hardware solutions often involve soft or compliant
end-effectors designed to reduce the risk of damage to the
object [15], [16]. However, such designs require substantial
engineering effort and task-specific expertise. Alternatively,
methods leveraging tactile, force, or touch sensors enable
precise control and safe interaction. For example, Huang
et al. [17] train policies for gentle contact with fingertip
touch sensors, trained in simulation and real world. Similarly,
Yagawa et al. [18] propose a framework to learn to anticipate
fracture during grasping with tactile feedback, and Lee et
al. [19] study deformable grasping using visuo-tactile simu-
lation. Lee et al.’s approach has been validated in simulation,
though real-world evaluation remains to be studied. While
promising, these methods using additional on-finger sensors
often increase the system complexity and cost.

To avoid the issues, an alternative approach is to utilize
vision-based strategies to estimate interaction forces from
vision. Wang et al. [5] propose a framework that predicts
contact forces using structured-light. Jung et al. [20] estimate
suture tension from video and tool poses. Similarly, Masui
et al. [4] predict manipulation forces from surgical images to
detect unsafe over-force events. In contrast, our work lever-
ages stress information computed in simulation as a physical
prior. With approximate knowledge of material properties,
a stress-penalized policy can be learned in simulation and
transferred to the real world through domain randomization.
This avoids reliance on specialized tactile sensors while
exploiting the fidelity of modern soft-body simulators to
achieve safe DFOM [21].

B. Sim-to-Real Reinforcement Learning for Manipulation

Sim-to-real reinforcement learning has been widely ex-
plored in diverse domains, including in-hand manipula-
tion [22], dexterous manipulation [23], tactile-based ma-
nipulation [24], and manipulator co-design [25]. For de-
formable object manipulation, Matas et al. [13] pioneered
training RL agents entirely in simulation and transferring
the learned policies to the real world using only visual
input. Subsequent works often rely on reward shaping to
guide learning. For instance, curiosity-based rewards have

been applied to minimize impact forces and promote safe
exploration [17], while sparse rewards have been used to
achieve consistent grasping of deformable food items such
as spaghetti [26]. Although effective, such strategies demand
extensive reward engineering. Other approaches integrate
curriculum learning with RL to progress from simpler to
more complex tasks, including cable insertion and robotic
surgery [27], [28], [29]. Recent advances further combine
RL with offline demonstrations and human-in-the-loop inter-
ventions, improving sample efficiency and training stability
significantly [14], [30]. These methods have proven effective
in tasks such as deformable timing-belt assembly. This line of
sample-efficient RL methods is particularly appealing to sim-
to-real transfer in DFOM, where the computational demands
of soft-body simulation pose major challenges. Inspired by
these developments, we investigate sim-to-real reinforcement
learning for 3D deformable and fragile object manipulation
that explicitly accounts for object fragility - a previously
unexplored research gap. Our method couples stress-guided
rewards with curriculum learning or demonstration bootstrap-
ping. It aims to enable safe and gentle manipulation policies
under real-world fragility constraints.

III. PRELIMINARIES

In this work, we study the manipulation of deformable
and fragile objects with two objectives: (i) successfully
performing the task, such as picking up or pushing an object
to a target, and (ii) minimizing applied stress to ensure object
is not damaged. We begin by formally defining the problem
(Section III-A), followed by an introduction of key concepts
and notations related to object stress (Section V-B), which
form the basis of our method.

A. Problem Formulation

We consider the problem of learning a DFOM policy that
achieves the aforementioned objectives. That is, controlling
a robot end-effector to perform a manipulation task while
minimizing damage to the object. Here, we assume partial
observability of the state of the object. Thus, the stress
applied to the object can only be measured in simulation.

Formally, we model DFOM as a partially observable
Markov decision process (POMDP). The state space S
encodes the joint position and velocities of the robot, as
well as the particle positions and velocities of the object and
its internal stress. The observation space O includes a low-
dimensional encoding (via neural network feature extractors)
of the object’s partial point cloud o ∈ Rd, the centroid
of the point cloud c ∈ R3, as well as the robot end-
effector pose p ∈ SE(3), and the gripper position g ∈ R.
The action space A parameterizes the Cartesian displace-
ment ∆x ∈ R3, the orientation displacement (axis–angle
representation) ∆θ ∈ R3 of the end-effector, and the gripper
position displacement ∆g ∈ R.

B. Stress Metrics

We provide here a formal definition of stress. We assume
access to a Material Point Method (MPM) simulation of the
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Fig. 2. Overview of our stress-guided RL framework for deformable and fragile object manipulation. Training begins with (1) curriculum learning, where
the agent first learns the task in rigid simulation before switching to soft-body simulation. (2) In the soft setting, stress-based guidance encourages safe
manipulation, and expert demonstrations bootstrap learning. (3) Once converged, the policy is deployed zero-shot in the real world, with the setup closely
matched to the simulation. The policy takes as input the segmented object point cloud and an 11-dimensional state vector: the 7-DoF end-effector pose
pose p ∈ SE(3), the gripper width g ∈ R (in cm), and the centroid of the point cloud c.

deformable object, where the object is represented by N
particles. For each particle i, we can compute a Cauchy stress
tensor C(i) ∈ R3×3. From this tensor, we derive the Von
Mises stress [31] σ(i), a scalar quantity that aggregates stress
information across all spatial directions. More specifically,
for the Moving Least Squares Material Point Method (MLS-
MPM) [32], the Cauchy stress tensor C(i) is computed
during the Grid-to-Particle transfer. All stress values reported
in this paper are in unit of Pa (N/m2).

Now, to evaluate the level of stress experienced by an
object using a single scalar, we propose to aggregate per-
particle stress σ(i) in five ways: (i) mean stress, (ii) median
stress, (iii) top percent mean stress, (iv) top percent median
stress, and (v) maximum stress. Suppose the particle stresses
are ordered in a descending manner: σ(1) ≥ σ(2) ≥ σ(i) ≥
σ(N). The mean stress is given by σ̄ = ΣN

i=1σ
(i)/N . The

median stress σ̂ is the median value over all particle stresses.
The top K ∈ (0, 100) percent mean stress is determined as
σ̄top{k} = ΣM

i=1σ
(i)/M , where M = ⌊KN/100⌋. Finally, we

denote the maximum stress over particles as σmax.

IV. METHOD

We propose a stress-guided RL framework, as presented
in Fig. 2. (1) Training begins with curriculum learning,
where the agent first learns the task in rigid simulation. (2)
After convergence in rigid setting, we switch to soft-body
simulation and introduce stress-based guidance to promote
safe manipulation, while expert demonstrations bootstrap
learning. (3) Once the policy converges, it is deployed zero-
shot in the real world, using a setup carefully matched to

the simulation. The framework explicitly accounts for the
object deformation by measuring the stress while performing
the manipulation in a simulated environment. The learned
policy can then be transferred to the real-world in a zero-
shot manner, without any additional fine-tuning.

A. Stress-Guided Reinforcement Learning

We propose to use the stress obtained in simulation to
guide policy learning, as illustrated in Fig. 2. In this section,
we start by describing the stress-penalized reward, followed
by the details of policy training and architecture.

1) Reward design: The reward function consists of two
terms: (i) Task success reward Rsuccess, and (ii) Stress-
penalized reward Rstress. The task success reward encourages
the robot to complete manipulation tasks such as picking and
pushing. Rsuccess also includes intermediate dense rewards to
achieve each sub-goal of the task. For example, approach-
ing the object as a precondition of a successful lifting is
rewarded. The stress-penalized reward combines the stress
metrics introduced in Section V-B. This discourages actions
that induce damage and promotes gentle behavior.

The yield and fracture behavior of deformable and fragile
objects is primarily dictated by the maximum stress applied
across the object’s body. However, directly using the maxi-
mum stress as a penalty produces high-variance signals due
to simulation randomness and policy execution variability.
In contrast, global statistics such as mean or median stress
can overly smooth the signal, masking localized high-stress
regions. This is illustrated by an example shown in Fig. 3: a
firm grasp across the object (left), and a corner pinch (right).
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Fig. 3. Global statistics (mean stress and median stress) may not reflect the
local large deformation (as shown on the right), whereas max stress more
reliably captures the information.

While both exhibit nearly identical mean and median stress
values, the maximum stress reveals that the latter induces
severe localized stress likely to cause damage.

To balance robustness and sensitivity, we propose a stress-
penalized reward that captures localized peaks without ex-
cessive variance. The reward combines the mean stress σ̄
with the median of the top 10% stress values σ̂top10 across
particles, and applies a quadratic transformation to penalize
high-stress regions more aggressively. The penalty is defined
as

Rstress = − 1

β
(ασ̂top10 + (1− α)σ̄)2, (1)

where α ∈ [0, 1] balances the penalty from σ̂top10 and σ̄.
The quadratic term amplifies the effect of large stresses,
ensuring that occasional but dangerous peaks are penalized
more severely. The scaling factor β further sharpens the
penalty once stress values exceed a threshold near β.

2) Policy Training and Architecture: As shown at the
bottom of Fig. 2, our policy encodes the object point cloud
using PointNet [33] and the robot state using an MLP. The
two latent representations are concatenated to form a shared
feature vector, which serves as input to both actor and critic
networks, parameterized as MLPs. Policy optimization is
performed using Soft Actor-Critic (SAC) [34].

B. Offline Demonstrations

Incorporating a stress penalty into the reward can conflict
with the primary task objective, since accomplishing the task
requires exerting some stress. As a result, naively training
policies with the stress penalty often degenerate into avoiding
contact with the object to minimize stress, thereby failing to
accomplish the task [17] (Our experiment in Table I validates
this). To mitigate this issue, we leverage human demonstra-
tions to bootstrap policy learning [14], [35]. We adopt the
Reinforcement Learning with Prior Data (RLPD) framework
with SAC as the backbone. Following RLPD, we include
offline demonstrations in the replay buffer alongside online
rollouts using a symmetric sampling strategy. Specifically,
we collect 20 demonstrations in simulation via keyboard tele-
operation for each task, and each training batch consists of
50% offline demonstrations and 50% online experience. This
integration of human prior knowledge improves sample ef-

Fig. 4. Experimental setup showing the robot manipulator, the target object,
and the RGB-D camera used to provide observations to the control policy.

ficiency, prevents convergence to suboptimal behaviors, and
enables effective learning with the stress-penalized reward.

C. Curriculum Learning

Training with deformable objects is computationally
demanding, as accurate simulation requires fine-grained
timesteps. Compared to rigid-body dynamics, deformable
simulations must employ substantially more substeps given
the same control frequency to ensure stability, leading to
significantly longer training times. To accelerate training
while preserving task objectives, we make use of curriculum
learning [27]. Here, we exploit the fact that (1) the task
objective (pick-up/push) can be done on both rigid and soft
object, (2) early learning stages do not require deformable
object dynamics.

During the early stages of learning, the agent’s primary
objective is to approach the object. The behavior is largely
independent of whether the object is rigid or deformable.
Motivated by this observation, we adopt the following cur-
riculum learning strategy. First, the policy is trained on a
rigid object surrogate of the same shape. Upon convergence,
the object is switched to a deformable type (and thus soft
body simulation is used). This approach improves overall
training time efficiency while preserving task objectives.

D. Mitigating the Sim-to-Real Gap

To mitigate the impact of model mismatch between simu-
lation and the real world of deformable and fragile objects,
we employ domain randomization of key physical parame-
ters. In particular, the friction coefficient, Young’s modulus,
and Poisson’s ratio of the object are randomized during
training. In addition, we randomize the initial pose of both
the object and the robot end-effector, which helps to increase
robustness against diverse initial configurations.

To account for perceptual uncertainty, we add zero-mean
Gaussian noise to the observation, including the point cloud,
its centroid, the end-effector pose, and the gripper position.
The noise variance is set individually for each component.

V. EXPERIMENTS

The experimental evaluation is structured around the fol-
lowing Research Questions (RQs): (i) Does our stress-guided



TABLE I
EVALUATION ON PICKING UP A CYLINDRICAL TOFU (SIMULATION).

C: Curriculum, SPR: Stress-Penalized Reward, D: Offline Demonstrations,
SR: Success Rate.

C SPR D SR ↑ σ̄ ↓ σ̄top5 ↓ σmax ↓

× × × 0.90±0.04 2584±243 14974±1981 32879±5798
✓ × × 0.97±0.03 2527±139 12705±1001 25427±1508
✓ ✓ × 0.90±0.12 2192±138 11891±1445 22575±4237
× ✓ × 0.00 N/A N/A N/A
× ✓ ✓ 0.97±0.04 1966±150 9707±319 17774±2245
× × ✓ 0.95±0.03 2450±132 12934±1908 23888±2332
✓ × ✓ 0.98±0.01 2343±66 12122±380 24719±1190
✓ ✓ ✓ 0.98±0.01 1747±67 9271±459 16915±1048

BC 0.44±0.08 1910±167 8066±301 13413±602

TABLE II
EVALUATION ON PUSHING A CYLINDRICAL TOFU TO A GOAL

(SIMULATION).

C SPR D SR ↑ σ̄ ↓ σ̄top5 ↓ σmax ↓

× × × 0.83±0.07 828±48 3859±186 7831±500
✓ × × 0.95±0.02 643±75 3011±144 5935±447
✓ ✓ × 0.93±0.06 646±19 3115±180 5972±377
× ✓ × 0.72±0.09 854±92 3974±212 8322±310
× ✓ ✓ 0.83±0.04 546±21 2443±99 4860±161
× × ✓ 0.83±0.07 597±111 2797±480 5631±992
✓ × ✓ 0.84±0.06 609±95 2913±269 6022±918
✓ ✓ ✓ 0.88±0.10 626±47 3088±274 6563±727

BC 0.36±0.06 531±13 2343±42 4576±293

RL framework successfully learn to manipulate deformable
and fragile objects, in terms of task success and avoiding
damage to the object? (ii) How much does each of the
design choices contribute to successful DFOM performance?
(iii) Can the policies learned in simulation be successfully
transferred to the real world in a zero-shot manner?

A. Experimental setup

We employ a UFactory xArm 7, a 7-DoF robotic ma-
nipulator with a standard parallel-jaw gripper (Fig. 4). The
deformable and fragile object used in our experiments is
tofu, selected for its low stiffness and yield stress. This
makes it a particularly challenging test case. In simulation,
we apply domain randomization over the tofu’s material
properties, sampling Young’s modulus from [5000, 10000]
and Poisson’s ratio from [0.325, 0.4], which encompasses the
approximate physical characteristics of the real tofu [36].
In simulation, we use Genesis [21] with the built-in Taichi
soft body physical engine [37]. We employ MPM rather
than other methods, such as the Finite Element Method,
as it offers more stable and accurate performance under
large deformations typical in DFOM scenarios [38]. For real-
world experiments, an external Intel RealSense L515 LiDAR
camera is mounted in front of the robot to capture the object’s
point cloud. The tofu used in the experiments is shaped using
3D-printed cutters into cubes or cylinders and dyed with blue
ink to facilitate segmentation from the background and robot
via simple color thresholding.

TABLE III
EVALUATION ON PICKING UP A CUBIC TOFU (SIMULATION).

C SPR D SR ↑ σ̄ ↓ σ̄top5 ↓ σmax ↓

× × × 0.98±0.03 2354±203 11505±747 20018±2575
× ✓ ✓ 0.97±0.03 1505±61 8448±480 12766±706
✓ ✓ ✓ 0.98±0.03 1981±155 9376±314 15107±646

TABLE IV
EVALUATION ON PUSHING A CUBIC TOFU (SIMULATION).

C SPR D SR ↑ σ̄ ↓ σ̄top5 ↓ σmax ↓

× × × 0.76±0.06 719±104 3154±267 4848±307
× ✓ ✓ 0.68±0.01 524±61 2502±195 3720±329
✓ ✓ ✓ 0.84±0.01 696±61 3102±98 4612±246

B. Tasks and Evaluation Metrics

We evaluate two representative tasks: (i) Pick-up: ap-
proach, gently grasp, and lift a piece of tofu. A pick-up
is considered successful if the tofu is raised at least 9 cm
above the table. (ii) Push: move a piece of tofu on the table
to a circular target area of radius 2 cm, fixed at location
(x = 47 cm, y = 0, z = 0) in the robot base frame.

In simulation, we evaluate performance using both task
success and stress-based metrics. The success rate is defined
as the proportion of successful pick-ups or pushes, regardless
of object damage. To quantify stress, we report the following
statistics: the mean stress σ̄, the mean of the top 5%
stress values σ̄top5, and the maximum stress over the object
particles σmax. For each of these stress metrics, we record
the maximum value observed over the entire episode as the
final quantity. In the case of task failure, stress values are
excluded from evaluation to avoid biasing the averages.

C. Implementation Details

For pick-up tasks, we combine approach ra, lift rl,
distance-to-goal rg , and success rs rewards. We define ra =
exp(−20d), where d is the Euclidean distance from the
object to the tool center position; rl = clip(h/0.9, 0, 1),
where h is the object height; rg = exp(−20dgoal), where dgoal
is the Euclidean distance from the object to the goal location;
The success reward rs is binary, indicating whether the object
reaches the goal height, with 2 cm threshold. Reward scales
are 0.3, 0.7, 1.0, and 2.0 for ra, rl, rg , and rs respectively.
Push tasks use the same formulation, except for (1) no rl,
(2) rs and rg depend on planar distance to the goal. Stress
penalties use β = 6000, α = 0.8, and a scale of 5× 10−5.

To ensure reproducibility and support future research
on DFOM, we will release our code, trained checkpoints,
demonstrations, hyper-parameters, and links to the tofu &
foam used in real-world experiments on our project website.

D. Evaluation in Simulation

We evaluate whether the proposed method manipulates
fragile objects effectively while minimizing the stress ap-
plied stress. In addition, we quantify the contribution of

https://sites.google.com/view/gentle-manipulation


Naive Curriculum Stress reward Demo Ours-1 Ours-2

Fig. 5. Qualitative results for the pick-up task of a cylindrical tofu. Each column illustrates a rollout with a different method. A green tick indicates task
success without visible damage, while a red cross denotes either task failure or damage to the tofu.

Naive Curriculum Stress reward Demo Ours-1 Ours-2

Fig. 6. Qualitative results for the task of pushing a cylindrical tofu to a goal using different methods. The task begins with the gripper fully open, and
the fingers may open or close during execution. Policies that damage the tofu often close the gripper tightly around the object while pushing it to the goal.
In contrast, our methods close the gripper gently, enabling the tofu to be pushed reliably to the destination.



TABLE V
EVALUATION ON PICKING UP A CUBIC FOAM (REAL WORLD).

Pick-up Success Rate ↑ Water Loss % ↓

BC 0.40±0.51 9.52±3.88
Naive 1.00±0.00 41.90±5.40
Ours-1 1.00±0.00 10.00±1.50
Ours-2 0.90±0.31 21.69±7.12

three design components: (i) curriculum learning, (ii) stress-
penalized reward, and (iii) demonstrations. We consider the
Pick-up and Push tasks on tofu objects with two distinct
geometries: cylindrical and cubic. We consider two variants
of our method reported as Ours-1 (stress-penalized reward
& demonstrations) and Ours-2 (full method: curriculum &
stress-penalized reward & demonstrations). We further inte-
grate in the evaluation the following baselines and ablations:
Naive (vanilla RL without curriculum, stress-penalized re-
ward, or demonstrations), Curriculum (only curriculum),
Stress reward (only stress-penalized reward), Demo
(only demonstrations), and Behavior Cloning BC [39]. For all
methods, including BC, we use the same 20 demonstrations
per task and object, and identical reward hyper-parameters.

Tables I & II present the full ablation on cylindrical tofu
(primary benchmark). Tables III & IV report a reduced
evaluation on cubic tofu to probe shape generalization. The
results are reported over 3 random seeds.

The results show a trend of decreasing applied stress for
our proposed method while retaining a high success rate,
whereas baselines that do not consider stress consistently
induce the highest stress on the object. More specifically,
the key findings are: (i) The Naive method can achieve
moderate task success but typically induces high stress, re-
sulting in frequent tofu damage. (ii) The Stress reward
makes the policy overly conservative, preventing contact
with the tofu and leading to poor task success. (iii) In
both pick-up and push tasks (see Table I and II), relying
solely on demonstrations (Demo) is insufficient to achieve a
low-stress manipulation policy, even though the demonstra-
tions are carefully collected to minimize stress. In contrast,
Ours-1 — which adds stress-penalized rewards in addition
to demonstration — yields significantly better results. This
underscores the necessity of incorporating stress-based re-
wards, even when high-quality demonstrations are available.
(iv) Curriculum and demonstrations both serve as effective
bootstrapping mechanisms, with demonstrations additionally
providing human knowledge for gentle handling. Interest-
ingly, Ours-1 often matches or even surpasses Ours-2 (all
three) in minimizing stress. (v) Compared to our proposed
approaches, while BC reduces stress, its low task success rate
makes it less effective considering the binary objectives.

Altogether, these results address RQs (i) and (ii), confirm-
ing that our stress-guided RL framework enables effective
manipulation of fragile objects under reduced stress, with
the stress-penalized reward as a necessary component, and
curriculum learning demonstrations providing complemen-
tary improvements.

Fig. 7. Qualitative results for the water loss from a fully water-absorbed
foam after executing the pick-up task with different methods. The dropped
water is highlighted in purple, a smaller marked area indicates better
performance. While BC exhibits the least water loss, its pick-up success
rate is less than half that of Ours-1 and Ours-2.

E. Real-World Experiments
We assess the zero-shot transfer capability of our method

to real-world DFOM, evaluating both quantitatively and
qualitatively the stress applied to the objects despite not
having direct access to it.

1) Quantitative evaluation: We assess the gentleness of
the grasp using an absorptive foam block saturated with
water. The foam is weighed before and after each pick-up
trial, and the difference (i.e., water loss due to squeezing) is
normalized by the initial absorbed water. Each trial starts
with the same initial water content (21 g, excluding the
foam’s own weight). Policies are evaluated using four meth-
ods across 10 trials each: Naive, Ours-1, Ours-2, and
BC. The results are summarized in Table V, with a qualitative
visualization shown in Fig. 7.

Key takeaways: (i) Both Ours-1 and Ours-2 achieve
high pick-up success rates with substantially reduced water
loss, indicating gentler manipulation compared to Naive.
BC also minimizes water loss, but achieves only 40% suc-
cess. This suggests that more than 20 demonstrations may be
needed, which requires a higher data collection cost than our
bootstrapped RL method. (ii) Policies trained on tofu transfer
to foam, due to the similarity in their physical properties.

2) Qualitative evaluation: We qualitatively evaluate
Naive, Curriculum, Stress reward, Demo,
Ours-1, and Ours-2 across the pick-up & push tasks.
Results for cylindrical tofu are shown in Fig. 5 & Fig. 6.
Our methods (Ours-1 & Ours-2) consistently achieve
the task objectives while preserving the integrity of the tofu.
In contrast, other methods either complete the task at the
cost of damaging the tofu or fail to complete it altogether.
These findings are consistent with the simulation results,
demonstrating successful zero-shot sim-to-real transfer. In
the spirit of eco-friendliness and given the clear performance
difference of the methods, we avoid repeating physical
experiments with tofu to reduce food waste.

VI. CONCLUSIONS

We proposed a stress-guided RL method for deformable
and fragile object manipulation. Our approach enables learn-
ing a damage-aware policy using only visual input, which
can be transferred to the real world in a zero-shot manner.
To achieve this, we introduced a stress-penalized reward in
simulation and bootstrapped policy learning through curricu-
lum and offline demonstrations. We evaluated our method in



both simulated and real-world tasks, including the pick-up
& pushing of fragile objects. Our results showed that, by
including the proposed design components, our approach was
able to successfully perform these tasks while minimizing
damage to the objects. This work highlights the importance
of integrating physical priors, such as the stress when ma-
nipulating fragile objects, in guiding learning approaches to
enable more reliable and gentle manipulation.

While our method mitigates the sim-to-real gap through
domain randomization, discrepancies between simulated and
real-world soft body modeling and dynamics remain a chal-
lenge. Future work could explore training RL policies in the
real-world to further reduce this gap. Additionally, the pro-
posed approach could be extended to handle generalization
across a broader range of objects, including food items and
other soft materials. Finally, we identified the need for a
standardized benchmark in this area, which would facilitate
more consistent evaluations of future methods.
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