
T-DOM: A Taxonomy for Robotic
Manipulation of Deformable Objects

Journal Title
XX(X):1–18
©The Author(s) 2024
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

David Blanco-Mulero1, Yifei Dong2, Julia Borras1, Florian T. Pokorny2 and Carme Torras1

Abstract
Robotic grasp and manipulation taxonomies, inspired by observing human manipulation strategies, can provide key
guidance for tasks ranging from robotic gripper design to the development of manipulation algorithms. The existing
grasp and manipulation taxonomies, however, often assume object rigidity, which limits their ability to reason about the
complex interactions in the robotic manipulation of deformable objects. Hence, to assist in tasks involving deformable
objects, taxonomies need to capture more comprehensively the interactions inherent in deformable object manipulation.
To this end, we introduce T-DOM, a taxonomy that analyses key aspects involved in the manipulation of deformable
objects, such as robot motion, forces, prehensile and non-prehensile interactions and, for the first time, a detailed
classification of object deformations. To evaluate T-DOM, we curate a dataset of ten tasks involving a variety of
deformable objects, such as garments, ropes, and surgical gloves, as well as diverse types of deformations. We
analyse the proposed tasks comparing the T-DOM taxonomy with previous well established manipulation taxonomies.
Our analysis demonstrates that T-DOM can effectively distinguish between manipulation skills that were not identified in
other taxonomies, across different deformable objects and manipulation actions, offering new categories to characterize
a skill. The proposed taxonomy significantly extends past work, providing a more fine-grained classification that can
be used to describe the robotic manipulation of deformable objects. This work establishes a foundation for advancing
deformable object manipulation, bridging theoretical understanding and practical implementation in robotic systems.
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1 Introduction

Robotic grasping and manipulation is a complex field
due to the diverse challenges it encompasses, ranging
from high-level scene understanding to the contact-rich
interactions required for precise manipulation tasks. In this
context, taxonomies have been used to provide structure
and understanding of the problem. Examples range from
the classic grasp taxonomies (Cutkosky 1989; Feix et al.
2015) that are useful for gripper design and grasp choice
decision-making to more recent manipulation taxonomies
(Bullock et al. 2012; Paulius et al. 2020) that define the type
of interactions that can occur between the environment, the
objects and the grasping agent, or the type of skills and tasks
that exist (Wörgötter et al. 2013). Taxonomies and ontologies
provide structure to complex problems, facilitating high-
level decision-making, the development of more specialised
low-level skills and the standardisation and benchmarking of
the problem.

Existing taxonomies for manipulation have addressed
various factors, including relative motion at contact points
and between the object and environment (Bullock et al.
2012), the use of single or multiple hands (Krebs and Asfour
2022), the role of external forces in in-hand manipulation
(Dafle et al. 2014), and broader concepts of rigid-soft
interactions (Paulius et al. 2020). However, these taxonomies
have mainly focused on classifying key aspects relevant to
the manipulation of rigid objects, overlooking how the object
deforms when manipulated. In this work, we address this gap

by incorporating an analysis of object deformation, which
can facilitate the classification of diverse manipulation skills
required for handling deformable objects.

The manipulation of deformable objects is of significant
importance due to the ubiquitous presence of objects
such as clothes, cables and food items in both everyday
interaction scenarios and in industrial settings. Deformable
object manipulation methodologies are however currently
less developed compared to rigid object manipulation and
pose significant challenges due to the high dimensionality of
the object’s configuration space. In order to manipulate these
objects, the steps required to accomplish a task are highly
influenced by the state of deformation, which may change
with each interaction. While recent reviews of deformable
object manipulation comprehensively cover the progress
and ongoing challenges (Yin et al. 2021; Zhu et al. 2022;
Longhini et al. 2024), few works have tried to classify
in a systematic and descriptive way how the deformation
affects the planning and execution of each manipulation
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step. One of the key limitations to identify the deformation
of an object comes from the complexity of accurately
measuring its state (Sanchez et al. 2018; Yin et al. 2021;
Zhu et al. 2022), which involves the partial observability
of the object. Existing approaches address this by using
quantitative metrics that measure the deformation of objects
such as ropes (Liu et al. 2023) or clothes (Coltraro et al.
2023), and qualitative metrics or labels that describe its state,
e.g. identifying crossings in ropes (Huang et al. 2024), or
the folded state of cloths (Jiménez 2017; Garcia Camacho
et al. 2022). Due to the complexity of mapping diverse
deformation modes to a quantitative metric, to build a
taxonomy that can describe the deformation, this work
adopts a qualitative classification that incorporates the forces
in the manipulation task that produce the deformation.

In order to establish a framework for understanding
robotic manipulation of deformable objects, this work pro-
poses the Taxonomy for Deformable Object Manipulation
(T-DOM), a taxonomy encompassing information about the
type of deformation of the object, the robot manipulator
motion, the end-effector grasp, as well as the interactions
of the manipulated deformable object with the environment
or the end-effector. The taxonomy is evaluated using a
dataset with varied manipulation actions and deformable
objects. The analysis reveals that the proposed categories
allow clear differentiation of manipulation strategies, even
when the same object is subjected to varying deformations.
Furthermore, our work discusses several applications for the
proposed taxonomy including gripper design and learning of
manipulation skills, along with future research directions.

Our main contributions can be summarised as follows:

• T-DOM: a taxonomy that qualitatively categorises
deformation, motion and interactions in robotic
manipulation of deformable objects, allowing for a
structured analysis of these tasks.

• A qualitative classification of bending deformation
based on the structure of the object state, distinguish-
ing between structured and unstructured bending to
better capture the type of deformation.

• A dataset of 10 deformable object manipulation tasks,
including garments, silicone meat phantoms, bags, and
surgical deformable objects.

• An analysis of the taxonomy, showcasing its effec-
tiveness in differentiating manipulation skills across
tasks in the dataset and evaluating the critical role of
deformation for this classification.

2 Related Works
This section starts by providing a review and discussion of
existing grasping and manipulation taxonomies, highlighting
the gaps in the literature, followed by a short review
of deformable object manipulation works and how these
address the deformation of the object.

2.1 Manipulation Taxonomies
In the field of manipulation, several taxonomies have
been proposed to classify diverse aspects of grasping and

manipulation. Cutkosky (1989) developed one of the earliest
grasp taxonomies, focusing on anthropomorphic grasp types
for manufacturing tasks. This taxonomy classifies grasps
based on the geometric and functional characteristics of the
hand and the object, including criteria such as prehensility
and grasp dexterity. Bullock et al. (2012) expanded on this
by introducing a hand-centric taxonomy that addresses both
human and robotic manipulation. This taxonomy offers a
detailed analysis of the contacts and motions involved in
manipulation tasks, including characteristics such as the
presence of motion at the point of contact. More recently,
Krebs and Asfour (2022) proposed a taxonomy for bimanual
manipulation, addressing the complexity of using two hands
simultaneously. This classification takes into account the
coordination of the hands as well as spatial and temporal
constraints. Nevertheless, these taxonomies assume that the
manipulated object is rigid, and do not classify interactions
with the object that may result in its deformation.

Few recent works have proposed classifications that also
consider the manipulation of deformable objects. Borràs
et al. (2020) provided an analysis of the types of grasps
used in cloth manipulation, considering the number of
contacts and the geometries of the manipulation agents.
However, this classification is restricted to grasps of textile
materials, disregarding other aspects of manipulation such
as the motion of the end-effector or the deformation of
the object. Paulius et al. (2020) introduced a more generic
motion taxonomy that takes into account the deformation of
the manipulated object by classifying the engagement type
as rigid or soft, and the structural outcome of the object
that, if deformed, could exhibit a temporal or permanent
deformation.

Although the aforementioned taxonomies have provided
comprehensive classifications of grasping and manipulation
tasks, these have not incorporated important aspects relevant
to the manipulation of deformable objects, such as the type of
deformation. Our proposed taxonomy addresses these gaps
by classifying the type of deformation based on the forces
involved in deforming these objects. In addition, our work
categorises the robot motion during the manipulation, as well
as the interactions between objects and their environment,
which are critical in real-world manipulation tasks involving
deformable objects.

2.2 Types of Deformation Under Manipulation
The robotic manipulation of deformable objects involves
different types of deformation, such as tension, compression
or bending. For instance, Saha and Isto (2007) focused on
the manipulation of deformable linear objects by applying
concepts of knot theory to manipulate cables and plan
knotting strategies. More recently, Luo et al. (2024) provided
insights into efficient routing strategies of linear deformable
cables through bending. In garment manipulation, Miller
et al. (2012) focused on sequentially folding cloths by
identifying the structure of the bending deformation, denoted
as g-folds. Li et al. (2015) identified parameters such as the
shear resistance of clothes for planning their manipulation by
measuring the bending deformation of the object. Longhini
et al. (2021) identified textile properties based on their
mechanical responses through tension and twisting applied
by a dual arm. For manipulating volumetric deformable
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BendingTensionCompression Torsion Shear

Figure 1. Robotic manipulation of multiple deformable objects showing compression, tension, bending, torsion and shear
deformation. Shear deformation examples include a cloth shear deformation from the open-source dataset provided by Wang et al.
(2011), and a sponge manipulated by a human.

objects, Shen et al. (2022) explored the tension, bending,
and compression of plush toys. Thach et al. (2022) focused
on shape control of volumetric deformable objects through
bending, developing control strategies from limited visual
input.

This paper presents a classification and analysis of the
aforementioned types of deformation commonly observed
in tasks studied within deformable object manipulation
research.

3 Properties of Deformable Object
Manipulation

This section introduces three key aspects of manipulating
a deformable object that serve as the foundation for
developing the proposed taxonomy: the concept and types
of deformation, the motion during manipulation and its
relationship to energy changes of the manipulated object,
and the interactions between the manipulated object and its
surroundings.

3.1 Deformation Concepts and Terminology
The term deformation is extensively used in the context of
robotic manipulation of deformable objects, encompassing
various aspects such as perception, modelling, and con-
trol (Hou et al. 2019; Arriola-Rios et al. 2020; Yin et al.
2021). However, throughout these works the concept of
deformation is ambiguous and left to the reader to concep-
tualise.

The Dictionary of Engineering defines deformation
as “any alteration of shape or dimensions of a body
caused by stresses, thermal expansion or contraction,
chemical or metallurgical transformations, or shrinkage
and expansions due to moisture change” (McGraw-Hill
2002). This definition opens a wide spectrum involving
thermal, chemical, and metallurgical transformations. These
transformations can often be neglected when performing
robotic manipulation of deformable objects by assuming
constant environmental conditions. Sanchez et al. (2018)
state that ”a deformation occurs when an external force
applied to an object results in the object changing its shape”.
More generally, deformation refers to any change in the
shape of an object. For a known object, it is considered

deformed if its shape differs from a predefined canonical
shape (Chi and Song 2021; Canberk et al. 2023). Conversely,
if the object retains its canonical shape, it is considered as not
deformed. However, in the absence of prior knowledge of
the object’s shape, deformation is identified by any deviation
from an initially observed object shape.

In this work, we assume that the forces that deform
an object in a robotic manipulation task can originate
from: 1) a robot manipulator, 2) a tool manipulated by
a robot, or 3) objects in the environment interacting with
the manipulated object. Considering the forces that a robot
applies during grasping, or while performing a motion to
complete a task, it seems intuitive to relate these forces
to the object deformation they can induce. Following this,
deformation can be characterised by the direction of the
applied forces (see Figure 1). The type of deformation can
be classified as compression, tension, bending, torsion, and
shear (Callister Jr and Rethwisch 2018). A detailed definition
of these deformations is provided below, accompanied by
examples of common tasks in robotic manipulation tasks.

Compression. This deformation results from applying
two opposite forces towards the object along a specific axis,
causing the object to shorten in the direction of the applied
forces. This deformation can also occur when applying a
single force to an object placed on a surface in the direction
perpendicular to the surface. This type of deformation is
common when shaping volumetric deformable objects (Shi
et al. 2024). As pointed out by Sanchez et al. (2018), 1D
and 2D deformable objects such as ropes and textiles are
characterised as objects without compression stress. This
follows from the fact that these objects are usually modelled
following an incompressibility assumption (Kashani et al.
2018). However, for certain deformation configurations such
as a folded or stacked 2D object, the object has significant
volumetric structure and in such cases, the assumption of
incompressibility can be relaxed, allowing 2D objects, such
as cloth, to undergo compression deformation, e.g. grasping
a folded cloth, see Figure 1.

Tension. This deformation can be seen as the inverse of
compression. Given one fixed point on the object such as a
grasping point, tension is generated when a force is applied
away from the object, stretching the object along the axis of
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Bending Level

No S L0 S L1 S L2US L0US L1US L2

Unstructured Structured

∼1D

∼2D

Bending

Figure 2. Qualitative classification levels for bending deformation as structured or unstructured for 1D and 2D deformable objects.
The structured level is classified by loops and g-folds (Miller et al. 2012), for 1D and 2D objects, respectively. The unstructured level
is classified by knots for 1D objects, and as the number of accessible corners for a cloth flattening task.

such forces without tearing it. This deformation is common
when a deformable object is stretched, for example, when
placing a tight cover on a chair or a bed sheet, stretching a
cloth in the air for placing it flat on a table (Ha and Song
2021), and when knotting ropes (Lee et al. 2015) or plastic
bags (Gao et al. 2023).

Bending. Also referred to as flexural deformation, this
deformation appears when applying an external force
perpendicular to the object’s longitudinal axis, causing it
to curve. The Dictionary of Engineering defines bending
as the deformation of points in an elastic body that were
originally straight, causing them to displace and form a plane
curve (McGraw-Hill 2002). Notably, even after the external
force is removed, the bending deformation can persist due
to the internal forces within the object, which may prevent
it from returning to its original shape. We refer the reader to
the existing literature on deformable object modelling (Hou
et al. 2019; Arriola-Rios et al. 2020; Coltraro et al. 2022),
which provides a detailed explanation of how these internal
forces can be approximated using different mathematical
models. Consequently, bending is a common deformation
encountered in deformable object manipulation tasks, such
as shaping ropes and clothes (Chi et al. 2024), or deforming
plush toys Shen et al. (2022).

Torsion. A torsional or twisting deformation is generated
when a torque is applied around the longitudinal axis of
the manipulated object, given that the axis is fixed in one
of its sides. This can occur as well when two torques are
applied in opposite directions along the longitudinal axis
of the object. Similarly to the compression deformation,
deformable linear objects and cloth-like objects can be
subjected to this deformation when they possess sufficient
volumetric structure. This deformation can be seen when
twisting a thread (Saha and Isto 2006), or wringing out a
sponge or a towel to dry it out (Bai et al. 2016), see Figure 1.

Shear. A shear deformation is caused when two external
forces are applied in opposite directions along two
distinct parallel lines of the object (McGraw-Hill 2002).
Manipulation actions that cause a shear deformation are
common when performing system identification (Wang et al.
2011). In textiles, the elasticity along different pulling lines
may differ dramatically due to fabrication processes. That
elasticity along diagonal lines is an important parameter to

consider in this particular setting. Shear deformation can also
be observed on volumetric deformable objects, such as meat
(Pierre et al. 2023). Nevertheless, this deformation is less
common in 1D and 2D deformable objects, where usually
the plane section principle is followed and therefore shear
deformation is neglected (Yu et al. 2016).

The concepts of compression, tension and torsion can be
intuitively understood as squeezing, stretching and twisting
an object, respectively, and can therefore be clearly identified
when manipulating deformable objects. However, while the
concept of bending is widely utilised in the literature (Li
et al. 2015; Shen et al. 2022; Thach et al. 2022), it does
not provide direct insight of the shape or state of the
object. For instance, both a crumpled and a folded cloth
exhibit bending deformation, yet their shapes are essentially
different. The challenge of defining bending deformation
arises from the infinite number of degrees of freedom in
deformable objects, where the internal forces can generate
small localised curvature changes in the object.

Consequently, it is challenging to categorise the deforma-
tion of an object simply as bending to understand the object
state. To identify different bending deformation cases, we
introduce two concepts: structured bending and unstructured
bending, depicted in Figure 2. These types of bending defor-
mation are characterised by the structural arrangement of
the deformation. If ordered bends exist, as happens when
folding, we call the bending structured. On the contrary,
if the bending deformation is chaotic or wrinkled, we call
it unstructured. Given the distinct nature of 1D and 2D
deformable objects, we provide separate metrics to recognize
the degree of structuredness. For the 1D case, we draw
inspiration from knot theory and deformable linear object
manipulation (Matsuno et al. 2006; Saha and Isto 2007),
while for the 2D case, we adopt the concept of g-folds as
proposed by Miller et al. (2012).

Structured Bending. To quantify the level of structure
in a bending deformation we use the number of removable
crossings, such as loops, or g-folds as metrics for 1D and
2D deformable objects, respectively. In 3D objects, the
structured bending is measured in the plane curve where the
bending deformation takes place.

Unstructured Bending. The idea is to measure the level
of unstructuredness by how much one needs to manipulate
the object to remove the bending. That is, displacing the
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points that form a plane curve to their originally straight
configuration. For 1D objects, we propose to use the linking
number of knots, which gives an idea of how difficult
to untie a knot is. For 2D, the manipulation required to
flatten an object is usually related to being able to grasp
certain keypoints, such as the shoulders of a T-shirt or
the corners/edges of a napkin. Therefore, we propose to
measure unstructured bending deformation by the number of
graspable or accessible keypoints (see Figure 2).

Both structured and unstructured bending deformations
can take place at the same time. For example, a rope can
present loops as well as knots, and cloths can present g-folds
as well as unstructured wrinkles.

3.2 Energies during Manipulation Motion

The manipulation of a deformable object can be concep-
tualised as determining the configuration of exerted forces
that brings the object to the desired state. Prior works on
deformable object manipulation have addressed the optimi-
sation problem of finding the motion to reach the desired
minimum-energy state or identifying the robustness of a
grasp from an energy perspective (Bretl and McCarthy 2014;
Dong and Pokorny 2024; Dong et al. 2024a). In this context,
the end-effector motion can be prescribed based on the
predominant energies of the object when moved from one
state to the desired one. These energies are the kinetic
and potential energy of the object, where the latter can be
further divided into gravitational potential energy and elastic
potential energy. While recent works simplify the problem
of finding the minimum energy-state motion by using e.g.
predefined motions that neglect the associated energies (Ha
and Song 2021), these approaches share the underlying goal
of moving the object into the desired state.

In this work, we relate the energies of motion to the
manipulation classification by Mason (2001). Here, dynamic
manipulation is defined as manipulation tasks dominated by
inertial forces, that is, the acceleration and mass of the object.
Hence, the motion is dominated by the kinetic energy of the
manipulated object. By contrast, quasi-static manipulation is
defined as tasks dominated by frictional and impact forces,
neglecting inertia. In deformable object manipulation, tasks
that require transporting the object or performing pick-
and-place motions are defined as quasi-static, which are
dominated by the gravitational energy. Similarly, tasks where
the success depends on the elasticity of the deformable can
be defined as quasi-static, which are dominated by the elastic
energy of the object. This energy is particularly relevant in
deformable objects like elastic rods, whose manipulation can
be formulated as the optimisation of the elastic energy of the
rod (Bretl and McCarthy 2014).

In addition, Mason classifies manipulation as kinematic or
static. In this work, we neglect these two categories since
deformable object manipulation tasks cannot be described
uniquely by the kinematics of the end-effector, and the
friction of the object due to collisions and self-collision
needs to be taken into account even when performing what
is denoted as static manipulation.

3.3 Interactions
Robotic manipulation is accomplished through physical
interactions of the robot with the target manipulation object.
This interaction can be defined as prehensile if the end-
effector contact forces with the object can stabilise it without
external forces. By contrast, if the interaction involves
forces such as gravity or a reaction force from a contact
with the environment the interaction is denoted as non-
prehensile. Grasping an object can be achieved by either
prehensile or non-prehensile grasps. Prehensile grasps for
rigid objects have been extensively studied and classified in
works like Cutkosky (1989) and Feix et al. (2015). Cutkosky
(1989) further classified grasps by their purpose or function,
distinguishing between power and precision grasps, while
Feix et al. (2015) categorised grasps based on the number
of fingers involved in exerting the opposite forces. On the
contrary, the diversity of prehensile grasps for deformable
objects has been less actively studied, partly because a pinch
grasp usually suffices to perform a wide range of deformable
object manipulation tasks. Borràs et al. (2020) introduced a
framework to classify textile grasps based on the geometry
of the contact patches, showing that although pinch grasps
are common, more complex grasps play a significant role
in dynamic manipulation. This framework included both
environmental and robot end-effector contacts, as well as bi-
manual grasps.

Non-prehensile interactions using contacts with surfaces
of the environment have been largely considered in the
literature for rigid objects, such as in (Bullock et al.
2012; Eppner et al. 2015; Dafle et al. 2014) and less
frequently addressed for deformable objects (Borràs et al.
2020). Additionally, research has explored combinations
of prehensile grasps with environmental contacts (Chavan-
Dafle and Rodriguez 2018). Furthermore, non-prehensile
grasps using acceleration forces present more challenges.
These are considered in the context of extrinsic dexterity
Dafle et al. (2014), which refers to the use of any external
forces to enhance manipulation.

All in all, these concepts are used to build the classification
developed from Section 4.3 to Section 4.5.

4 A Taxonomy for the Manipulation of
Deformable Objects

This section describes T-DOM, a taxonomy for robotic
manipulation of deformable objects, depicted in Figure 3,
which includes short tags associated with each category
of the classification. The taxonomy is divided into three
main categories: object deformation, robot motion, and
interactions. For clarity, Table 1 provides a comparison of the
categories and sub-categories from our proposed taxonomy
with those from existing grasping and manipulation
taxonomies. The remaining sections will explain how the
proposed categories compare to the related literature.

4.1 Deformation Classification
The types of deformation considered in T-DOM build on
those introduced in Section 3.1. In addition to compression
(C), tension (TN), torsion (TR), and shear (S), we
distinguish between different levels of structured bending
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OR

DEFORMATION

Compression (C) Tension (TN) Torsion (TR)Bending (B) Shear (S)

AND

Bending (TR+B)

Compression (TR+C)Tension (TR+TN)

Compression (B+C) Tension (B+TN)

Unstructured (B US)Structured (B S) AND

Quasi-Static Dynamic

OR

YES NO

Kinetic Energy (MK)Gravitational Energy (MG)

OR

YES NO

OR

YES NO

OR

MOTION (M)

PREHENSILE GRASP (G)

Point Constraint (GP)

OR

Line Constraint (GL)

NON-PREHENSILE INTERACTIONS (NP)

AND

Rigid Env. (ER) Soft Env. (ES)

OR

YES NO

OR

YES NO

AND

Environment (E) Agent Contact (A)

Rigid Agent (AR) Soft Agent (AS)

OR

INTERACTIONS

AND

CS CONTACT SLIDING (CS)

Passive Sliding (CSP) Active Sliding (CSA)

OR

CS CS

Elastic Energy (ME)

Figure 3. The proposed taxonomy is composed of deformation (D), motion (M), and interactions. The interactions are classified as
prehensile grasp (G) and non-prehensile interactions (NP), and contact sliding (CS) as a special case of interaction that can take
place in both prehensile grasps as well as each sub-category of non-prehensile interactions, shown by a dashed line connecting
the CS block. Each sub-category is shown with its associated short tag.

and unstructured bending. The first structured bending level
(S L0) identifies the transition from no bending deformation
to one crossing or g-fold. The subsequent structured levels
refer to increasing the numbers of loops or g-folds, e.g. S
L2 refers to either 2 loops or 2 g-folds. For unstructured
bending, the qualitative metrics are discrete. As previously
discussed, for 1D objects the first level (US L0) is defined
by removable crossings, and for 2D objects by almost
flat clothes with wrinkles, where all keypoints are visible.
Further levels of unstructured follow Fig. 2 .

Furthermore, we also address several combinations of
these deformations, which often occur simultaneously during
the manipulation of deformable objects. Below are a few
examples:

• C+B: Compression & Bending. In the 2D-
compression example shown in Figure 1, the
towel is folded (bending) and the grasp performed to
pick it up compresses it.

• TN+B: Tension & Bending. For instance when
folding a piece of cloth while applying tension at the
grasped points to prevent wrinkles (Lee et al. 2015).

• TN+TR: Tension & Torsion. In Figure 1 torsion, a
twisted towel undergoes torsional deformation as it
is wrung by a bimanual system. Simultaneously, the
robots apply tension by pulling the towel in opposite
directions.

As discussed in Section 2, this classification provides a
more comprehensive understanding of object deformation
than prior taxonomies, which either overlook deformable

objects or fail to account for the forces driving the
deformation, limiting their ability to differentiate between
different types of deformation, see Table 1. Note that we
leave for future work incorporating into the taxonomy
deformations that break the object or deform it in a
permanent way, such as plastic deformations, which have
been less actively explored as discussed in Section 6.1.

4.2 Motion Classification
For the proposed taxonomy, following the definitions
outlined in Section 3.2, we introduce the following
classification:

• MK: Motion → Kinetic. This includes dynamic
motions as described in the previous section,
dominated by inertial forces. Some examples include
swinging a cloth to unfold it (Ha and Song 2021), or
hitting a target with a rope (Chi et al. 2024).

• ME: Motion → Elastic This includes quasi-static
manipulations where the task success depends mostly
on the elastic forces of the object. Examples include
shaping a rope (Bretl and McCarthy 2014) or a
volumetric object (Shi et al. 2024), and securing a
mask string (Dong and Pokorny 2024).

• MG: Motion → Gravitational. This tag includes
quasi-static manipulations where the elasticity of
the object can be neglected. Examples include
transporting a cloth to store it (Yang et al. 2024) or
motions performed to approach the object.

Prepared using sagej.cls



Blanco-Mulero et al. 7

Table 1. Comparison of categories and sub-categories covered by grasping and manipulation taxonomies found in literature and
the proposed taxonomy. The categories are divided into distinctions of bimanual manipulation, robot motion, prehensile grasp,
interactions and deformation of the manipulated object.

C
at

eg
or

y

Su
b-

ca
te

go
ry

C
ut

ko
sk

y
(1

98
9)

Fe
ix

et
al

. (
20

15
)

Bu
llo

ck
et

al
. (

20
12

)

Bo
rrà
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Bimanual Manipulation ✗ ✓ ✓ ✓ ✓ ✓

Robot
Motion

Trajectory ✗ ✓ ✗ ✓ ✗ ✗
Energy ✗ ✗ ✗ ✗ ✗ ✓

Prehensile
Grasp

Anthropomorphic ✓ ✓ ✗ ✗ ✓ ✗
Nr. Contacts ✓ ✗ ✓ ✗ ✗ ✓

Robotic ✗ ✓ ✓ ✗ ✗ ✓

Interactions

Motion at Contact ✗ ✓ ✗ ✗ ✗ ✓
Non-Prehensile ✗ ✓ ✓ ✗ ✗ ✓

Rigid/Soft ✗ ✗ ✗ ✓ ✗ ✓
Contact Duration ✗ ✗ ✗ ✓ ✗ ✗

Deformable
Objects

Objects ✗ ✗ ✓ ✓ ✗ ✓
Elastic/Plastic ✗ ✗ ✗ ✓ ✗ ✗

Force Direction ✗ ✗ ✗ ✗ ✗ ✓

• MGE: Motion → Gravitational-Elastic. These are
cases where both elastic and gravitational energies
play a role in deformable object manipulation. For
instance, Dong and Pokorny (2024) present a scenario
where a fish is lifted from a table using a scoop.
While the scoop containing the fish is lifted up, the
fish is subject to elastic force due to the deformation
of its body under gravity, accompanied by a change of
gravitational energy.

Compared with the taxonomy definition (motion and no
motion) in Bullock et al. (2012), we further sub-categorise
motion in finer granularity. By contrast, our classification is
less detailed than the one proposed by Paulius et al. (2020),
which classifies the different prismatic and revolute axes of
the motion trajectory.

4.3 Prehensile Interaction Classification
Building on the definitions presented in Section 3.3,
we classify interactions into prehensile grasps and non-
prehensile interactions. In this work, prehensile grasps
are defined using a variation of the prehension geometry
framework from Borràs et al. (2020). Rather than focusing
on the geometry of the contact patches that generate the
opposing forces defining the grasp, we categorise grasps
based on the geometry they constrain on the object. Hence,
the classification proposed for prehensile grasps is as
follows:

• GP: Grasp → Point. Pinch grasps are a clear example
of grasps that constrain a point, where the position of
a single point on the object is controlled.

• GL: Grasp → Line. Constraining the position of a
line of an object can be used to perform tasks such as
cloth folding more efficiently (Sugiura et al. 2010) or
to fold in the air (Borràs et al. 2020).

These categories can be further extended to more complex
geometries as in the taxonomy by (Borràs et al. 2020), which
is the only prior taxonomy that does take into account the
number of contacts in prehensile interactions of deformable
objects. However, for simplicity, our classification is
restricted to the geometries that can be constrained with
parallel jaw grippers, which are more common in deformable
object manipulation tasks.

4.4 Non-Prehensile Interactions Classification
In this work, non-prehensile interactions are classified into
contacts of the manipulated object with the environment or
with the agent that manipulates the object. Furthermore,
we distinguish between interactions made by a soft or rigid
object, similar to Paulius et al. (2020).

Non-Prehensile Agent Contact This category encom-
passes interactions performed by the robot hand by applying
external forces. Specifically, one of the opposing forces is
applied by an agent (robot or tool), while the other force may
originate from the environment or gravity. Examples of this
category include basket grasps (Shirizly and Rimon 2024),
a caging grasp (Diankov et al. 2008), or pressing an end-
effector against a table for flattening a cloth. In this category,
we consider that the agent that creates the contact can be
either a robot or a tool held by a robot, where the tool acts
as the end-effector, which is actively controlled by the robot
(Vahrenkamp et al. 2012). Here, we follow the assumption
that we do not use tools that can perform a prehensile grasp,
hence, tool contacts are classified as part of the category of
non-prehensile contacts.

The agent contacts are classified into rigid or soft as:

• N-P.AR: Non-Prehensile → Agent Contact →
Rigid. Examples of this category are tools for
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manipulating deformable objects, such as using a
shovel (Dong and Pokorny 2024) or a rigid robot hand.

• N-P.AS: Non-Prehensile → Agent Contact → Soft.
Some examples include holding a plastic bag to insert
objects (Chen et al. 2023) or utilising a soft robot hand.

Non-Prehensile Environment This category refers to
grasps where both opposing forces are exerted by extrinsic
forces, which may be gravity or contacts with the
environment. This category could be categorised as no-
interaction, but considering environment contacts enables
us to further distinguish the interactions that lead to the
deformation of an object. The non-prehensile environment
interactions are classified as follows:

• N-P.ER: Non-Prehensile → Environment → Rigid.
This includes interactions with rigid surfaces, such as
an object resting on a table.

• N-P.ES: Non-Prehensile → Environment → Soft.
Examples of this category are interactions of the
deformable object with other deformable objects, e.g.
a towel placed on a pile of towels.

• N-P.ERS: Non-Prehensile → Environment → Rigid
& Soft. Both types of environment interactions—rigid
and soft—can occur simultaneously. For instance, a
set of grapes partially wrapped in an elastic protective
cover lying on a hard tray surface demonstrates both
rigid and soft environment contacts.

4.5 Contact Sliding
Along with the aforementioned interactions, our taxonomy
classifies one special case that is notably relevant in
deformable object manipulation, which is contact sliding.
It is conceptually equivalent to the category of motion at
contact discussed by Bullock et al. (2012) for rigid objects.
This interaction can be seen when sliding a robot end-
effector on a cloth to find its edge e.g. unfolding the
garment (Proesmans et al. 2023), or sliding through a cable
for its posterior insertion (She et al. 2021). In cases where
motion at contact exists, the contact point on the robot end-
effector usually remains unchanged, but the points on the
object translate or rotate with respect to a fixed contact
frame on the robot. In deformable object manipulation, we
primarily consider translational motion at contact, i.e. sliding
at contact, although a rotation could also be possible, and
appears in rigid object in-hand manipulation as pivoting.
Sliding is a characteristic of every contact, therefore, it is
a branch of the taxonomy that connects to both prehensile
grasping, environment and agent contact interactions, see
Figure 3. The category of contact sliding is classified as
follows:

• CSA: Contact Sliding → Active: Active sliding takes
place when manipulated object remains static while
the end-effector moves, modifying its contact points
with the object without grasping it. Some examples
include and end-effector grasping and slidinf along an
edge of a cloth Kondo et al. (2022) or the tip of an end-
effector sliding along the surface of a cloth to flatten it.

• CSP: Contact Sliding → Passive: Passive sliding
occurs when the end-effector remains static at the
contact and the object slides pulled by an external
force, such as another robot arm or gravity. An
example could be an object falling from a platform
grasp.

4.6 Bimanual manipulations
All categories describing end-effector actions such as
motion, grasps, or active contacts- refer to a single robot arm.
However, many deformable object manipulation tasks can
be performed more effectively using a bimanual system (Ha
and Song 2021; Zhang and Demiris 2022; Almaghout et al.
2024). Rather than creating duplicated categories in T-DOM,
as in Borràs et al. (2020); Krebs and Asfour (2022), we
propose to decouple the tags for each arm involved in
the task, e.g. left and right arm. Further details about this
decoupling are provided in Section 5.2.

5 Analysis of the Taxonomy
This section presents how the proposed taxonomy can be
applied to classify deformable object manipulation tasks,
demonstrating the importance of classifying the deformation
for understanding the task. The section starts by introducing
ten deformable object manipulation tasks, detailing the robot
motions and interactions with objects. Next, it outlines
the methodology used to label the manipulation actions
within these tasks according to the proposed taxonomy.
Finally, it describes the experiments performed to analyse
the taxonomy, which evaluate the impact of incorporating
deformation as a key category alongside the other categories.

5.1 Deformable Object Manipulation Dataset
To consider all the interactions of the deformable object
with the robot and its surroundings, as well as the motions
of the robot, we take inspiration on Bullock et al. (2012)
and analyse the transitions during robot manipulation tasks.
For such analysis, all the steps that take place during the
manipulation of a deformable object need to be recorded.
Despite the availability of open-source datasets such as the
Daily Interactive Manipulation dataset proposed by Huang
and Sun (2019), current datasets either show only one
stage of the manipulation, such as the action of lifting
or transporting an object, or have limited deformable
object manipulation tasks (Mitash et al. 2023; Khazatsky
et al. 2024). Thus, we recorded ten deformable object
manipulation tasks, five of them using the UR5 robot, and
five of them using hand-held grippers. The tasks are divided
into five bimanual manipulation tasks and five unimanual
tasks. We recorded RGB-D data of task execution using a
Microsoft Azure Kinect. For the analysis of the proposed
taxonomy, we utilised RGB images. In order to enable
further research on deformable object manipulation we open-
source the dataset* including the depth information, which
can be used in future works to analyse the deformation of the
manipulated objects. The analysed tasks can be described as
follows.

∗Project website: https://sites.google.com/view/t-dom
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(a) Task 1: Fold Towel. T-DOM no-zero constant category (omitted) is NP Env (R).
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(b) Task 2: Transport Towel. T-DOM no-zero constant category is Struct. Bending (S L2).
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(c) Task 4: Edge tracing. T-DOM no-zero categories are left and right grasp (P and P) and NP Env (R). Paulius et al.
(2020) categories are omitted since all are constant during the manipulation actions.

Figure 4. Analysis of the transitions of Task 1, Task 2, and Task 4 using the proposed taxonomy, T-DOM, as well as Paulius et al.
(2020) and Bullock et al. (2012) taxonomies, showing only the categories that show any change. For all tasks the structural
outcome according to Paulius et al. (2020) taxonomy is deforming temporarily, and therefore it is omitted for simplicity.
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Task 1: Fold towel. The robot grasps a folded towel by
sliding under its side to clamp it. It then performs a quasi-
static motion to fold the towel in half before releasing it.

Task 2: Transport towel. The robot approaches a folded
towel and slides beneath it to clamp it, as in task 1. It then lifts
and transports the towel, placing it onto a stack of towels.

Task 3: Wring out towel. Two robots approach a towel
and slide underneath to grasp it. Then, they lift it from a flat
configuration to apply a twisting motion to wring out water.

Task 4: Cloth Edge Tracing. In the starting configuration,
one robot grasps a corner of a cloth while a second one holds
the cloth nearby the edge. First, the robot grasping the corner
moves away from the other manipulator, inducing passive
sliding at the edge grasped. Once the motion stops, the robot
holding the edge moves away, creating active sliding along
the edge while the first robot remains stationary.

Task 5: Transport meat. The robot approaches a meat-
like silicone piece, slides underneath to clamp it securely,
and then lifts and transports the piece to place it on a tray.

Task 6: Cloth flattening. In this task, a hand-held gripper
approaches a cloth with two visible corners. The gripper
grasps the cloth, lifts it and places it. Finally, the gripper
slides out of the cloth, leaving three visible corners.

Task 7: Unfold medical gown. Two hand-held grippers
hold a partially unfolded medical gown and perform a
dynamic shaking motion to unfold the gown.

Task 8: Bag opening and item insertion Similar to task
7, two hand-held grippers holding a bag perform a dynamic
motion to improve its opening state. This is followed by the
insertion of a rigid object into the bag.

Task 9: Open surgical glove. One hand-held gripper is
inserted into a box to pinch and lift a glove. Once lifted,
a second gripper grasps the glove’s wrist border. The first
gripper releases the glove and re-grasps it from the opposite
side of the wrist. Finally, both grippers move to open the
glove.

Task 10: Cable looping. In the starting configuration, a
cable is grasped by a hand-held gripper. The gripper moves
to hang the cable onto a second gripper, which secures the
cable while the first gripper forms a loop. Once the loop is
created, the second gripper is opened to hang the loop.

The tasks have been designed to cover at least the basic
types of deformation except shearing, which is less common
in manipulation tasks. The compression deformation takes
place in tasks 1, 2, 5 and 6; tension in tasks 3, 4 and
9; torsion in task 3; and either structured or unstructured
bending in all tasks. In addition, the tasks have been
designed to include commonly studied manipulation tasks,
encompassing a diverse range of actions and trying to
maximise the variety of manipulation skills required.

5.2 Task Segmentation and Representation
The tasks described in the previous section are composed
of a sequence of sub-tasks or actions, each of which can
be described by T-DOM tags. To identify the segmentation
induced by T-DOM, we manually label the time instants in
which a robot action creates a change in any of the taxonomy
categories.

The resulting segmentation for Tasks 1, 2 and 4 is
shown in Figure 4, while an overview of the segmentation
for all the tasks, along with their corresponding tags, is
provided in Table 2. To distinguish between the left and right
manipulators in bimanual tasks, the tags are written in the left
and right side of the category, accordingly. For unimanual
tasks, we retain both tags but set the second manipulator to
a none tag, ensuring that all taxonomy tags have the same
structure, regardless of the number of manipulators.

In order to evaluate the contribution of our proposed
taxonomy to the state-of-the-art, we compare against the
taxonomies proposed by Bullock et al. (2012) and Paulius
et al. (2020). The Bullock taxonomy was created to represent
dexterous manipulation, with special attention to in-hand
manipulation. Although it is defined as a decision tree, it can
also be described in tags with the following categories:

• Contact Category: Contact Non-Prehensile (C NP);
Contact Prehensile (C P); No Contact (NC).

• Motion Category: Motion within hand (M W);
Motion not within hand (M NW); No Motion (NM).

• Slippage category: Motion at contact (A); No motion
at contact (NA); No contact ( ”-”).

Note that it is assumed that arm motion and motion within
hand will not happen simultaneously.

For the taxonomy of Paulius et al. (2020) the trajectories
of the robot or hand-held grippers as well as the manipulated
object are classified by the corresponding number of moving
axes. Furthermore, the type of interaction distinguishes
between contacts of the manipulator with rigid surfaces
(rigid discontinuous), contact with the deformable object
(soft discontinuous), and the object that is grasped (soft
continuous). Finally, all the manipulation tasks involve
objects working in their elastic region of the stress-strain
curve, and therefore, our tasks involve either no deformation
or temporary deformation of the object.

To better compare with these taxonomies, Figure 4 also
shows the segmentations induced by our T-DOM, Bullock’s
and Paulius, that act as baselines. The actions in task 1,
shown in Figure 4-a, involve: approaching and releasing
the object (Q.Grav), folding the object (Q.Grav/Elast), a
continuous contact with the rigid table (N-P.R), and a non-
prehensile contact with the gripper (NP.A R) when it slides
beneath one side of the cloth to clamp it (CS active). In
terms of deformation, the cloth is initially folded with a
single g-fold (structured bending level 1), grasping the object
results in compression deformation within the cloth, and
the folding action increases the structured bending level
to SL2. While the segmentation remains the same across
all taxonomies, there are several key differences. Firstly,
passive contacts with the environment are not considered in
the baselines. For example, the Bullock taxonomy describes
the folding action equally as any object transfer, that is,
a grasp in motion. In contrast, T-DOM provides a more
detailed representation. In addition to the grasp in motion,
it includes a description of the point grasp, the passive
contact with the environment, and a change in deformation.
Secondly, throughout all the manipulation steps Paulius et al.
(2020) classifies the deformation invariant, as the object is
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Table 2. Taxonomy tags describing the ten manipulation tasks and the associated transitions using T-DOM according to Figure 3.
The tags are divided into: left and right motion (Motion), left and right prehensile grasp (Grasp), non-prehensile environment
interaction (N-P. Env.), left and right non-prehensile active contact interaction (N-P. Act.), environment, left and right contact sliding
(CS), deformation (Def.), structured bending (S) and unstructured bending (US).

Task Action Motion Grasp N-P. CS Def. S USEnv. Act.

1-1: approach G N N N R N N N N N N L1 N
1-2: slide(under) G N N N R R N N A N N L1 N
1-3: grasp N N P N R N N N N N C L1 N
1-4: fold GE N P N R N N N N N C L2 N
1-5: ungrasp N N N N R R N N N N N L2 N

Fold towel

1-6: slide(out) G N N N R R N N A N N L2 N
2-1: approach G N N N R N N N N N N L2 N
2-2: slide(under) G N N N R R N N A N N L2 N
2-3: grasp N N P N R N N N N N C L2 N
2-4: transport G N P N N N N N N N C L2 N
2-5: place GE N P N S N N N N N C L2 N
2-6: ungrasp N N N N S R N N N N N L2 N

Transport towel

2-7: slide(out) G N N N S R N N A N N L2 N
3-1: approach(dual) G G N N R N N N N N N N N
3-2: slide(under-dual) G G N N R R R N A A N N N
3-3: grasp(dual) N N P P R N N N N N N N N
3-4: lift(dual) G G P P N N N N N N TN L0 N

Wring out towel

3-5: twist(dual) GE GE P P N N N N N N TN+TR N N
4-1: grasp(dual) N N P P R N N N N N N N L2
4-2: tracing(static) GE N P P R N N N N P TN L0 L2Edge tracing
4-3: tracing(motion) N GE P P R N N N N A TN L0 L1
5-1: approach G N N N R N N N N N N N N
5-2: slide(under) G N N N R R N N A N N N N
5-3: grasp N N P N R N N N N N C N N
5-4: transport G N P N N N N N N N C L0 N
5-5: place G N P N R N N N N N C N N
5-6: ungrasp N N N N R R N N N N N N N

Transport meat

5-7: slide(out) N N N N R R N N A N N N N
6-1: approach G N N N R N N N N N N N L2
6-2: grasp N N P N R N N N N N N N L2
6-3: lift G N P N R N N N N N N N L2
6-4: place G N P N R N N N N N N L1 L1

Flatten cloth

6-5: slide(out) N N N N R R N N A N N L1 L1
7-1: grasp(dual) N N P P N N N N N N N N L2Unfold gown 7-2: unfold(dynamic) K K P P N N N N N N N N L1
8-1: grasp(dual) N N P P N N N N N N N N L0
8-2: unfold(dynamic) K K P P N N N N N N N N L0
8-3: grasp(dual) N N P P N N N N N N N N NBag opening

8-4: offer N N P P R N N N N N N N N
9-1: approach N G N N RS N N N N N N N L1
9-2: contact N G N N RS N R N N N N N L1
9-3: grasp N N N P RS N R N N N TN N L1
9-4: lift N G N P N N N N N N N N L1
9-5: approach(second) G N N P N N N N N N N N L1
9-6: grasp(dual) N N P P N N N N N N N N L1
9-7: ungrasp(second) N N P N N N N N N N N N L0
9-8: approach(second) N G P N N N N N N N N N L0
9-9: grasp(dual) N N P P N N N N N N N N L0

Open glove

9-10: open GE GE P P N N N N N N TN L0 N
10-1: grasp N N N P N N N N N N N L0 N
10-2: hang N GE N P N N N N N N N L0 N
10-3: grasp(dual) N N P P N N N N N N N L0 N
10-4: ungrasp(second) N N P N N N N N N N N L0 N
10-5: approach(second) G G P N N N N N N N N L0 N
10-6: grasp(dual) N N P P N N N N N N N L0 N
10-7: fold(cable) GE GE P P N N N N N N N L1 N
10-8: ungrasp(hold) N N N P N R N N N N N L1 N
10-9: hang N GE N P N R N N N N N L1 N
10-10: grasp(dual) N N P P N N N N N N N L1 N

Cable looping

10-11: ungrasp(second) N N P N N N N N N N N L1 N
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temporarily deforming. Therefore, the action of folding does
not produce any change in their deformation category.

In the transport task shown in Figure 4-b, the structured
bending deformation remains constant due to the folded
configuration of the fabric. However, placing a folded
object requires a placing strategy involving an environmental
contact between the object and the placing location. This
interaction introduces a segment between the actions 4 and
5. In particular, this segment is not present in the Bullock
et al. (2012) taxonomy, as it does not account for passive
environmental contacts.

The classification differences with Paulius et al. (2020)
taxonomy become more pronounced when examining the
action of edge tracing in Figure 4-c. Here, Paulius et al.
(2020) classification shows three constant categories, which
refer to the motion of both robots which are in constant
contact with the cloth, temporally deforming the object.
Therefore, Paulius taxonomy provides only one segment.
Both T-DOM and Bullock et al. (2012) taxonomy are able
to distinguish between actions T5-2 tracing (static) and T5-3
tracing (motion), where contact sliding or motion at contact
plays a crucial role. In addition, our classification enables us
to distinguish the change in the structure of the cloth which
starts unstructured (US L1) and transitions to structured
bending deformation (SL0) once the task is complete.

Overall, the classification using T-DOM provides similar
granularity to Bullock et al. (2012) when segmenting the
tasks, except in the tasks involving passive contacts, like
placing an object. Here, a first contact with the environment
is used to place the deformable object, like in task 2. More
importantly, the classification using Paulius et al. (2020) and
Bullock et al. (2012) taxonomies provide less understanding
of the transitions the robot needs to accomplish the task since
the deformation phases are disregarded in the classification.

5.3 Evaluation of the Taxonomy
This section provides an analysis of the capability a
taxonomy has to classify the entire set of actions depicted
in Table 2. Given the diverse range of deformations within
the action set, taxonomies that group together manipulation
skills producing different deformations may be considered
less suitable for classifying deformable object manipulation
tasks.

To perform this analysis, we first define action-IDs like the
ordered set of tags that describe each action, as appearing in
Table 2. We then create a graph where the nodes correspond
to an action-ID and an edge connects two nodes when they
have the same code. Figures 5-a, 5-b, 5-c, and 5-d, show
clusters of action-ID graphs for T-DOM, T-DOM without the
deformation category, Paulius et al. (2020) taxonomy, and
Bullock et al. (2012) taxonomy, respectively. Furthermore,
each node shape and colour is associated with a deformation
as classified in Table 2, which helps to identify different
deformations that are classified together. The node colours
serve to differentiate the combinations of deformations
present, while each node shape represents a type of bending
deformation: circles for no bending, upward triangles for
structured bending, downward triangles for unstructured
bending, and squares for both types.

The cluster results in Figure 5-a show that our
taxonomy can clearly separate actions that generate different

deformations, highlighting its capability to categorise
disjoint actions by the object deformation involved. This
classification results in only four clusters with more than one
action-ID, each sharing motion type, interactions and object
deformation tags. For instance, the edge between action-IDs
”T1-6 slide (out)” and ”T2-2 slide (under)” originates from
the same structured bending deformation of the towel in task
2 (transport towel) as the end of task 1 (fold towel).

To assess the role of the deformation category in
distinguishing between actions, we conducted an ablation
study by removing the deformation category and re-
clustering the action-IDs, as shown in Figure 5-b. Without
the deformation category, a large cluster of eight ”grasp
(dual)” actions appears. Additionally, two smaller clusters
appear involving ”grasp” and ”grasp (dual)” actions. This
indicates that the grasp actions are the same except for
the deformation of the grasped object. This deformation is
relevant for decision making in tasks like grasping a folded
object, where the control strategy needs to retain the object
state. In particular, some grasps are separated due to the non-
prehensile environment interactions. For instance, the ”T9-
3: grasp” action is a pinch grasp where the grasped object
(glove) is in contact with a rigid object (box) and soft object
(glove underneath). Similarly, the ”T10-1: grasp” action is
performed in the air, that is, without an environment contact
with the table as seen in other grasps across the dataset. The
impact of the structured and unstructured bending is also
clear: actions exhibiting different bending deformations are
grouped together, such as the slide actions T1-2, T1-6, T2-2
and T5-2, or the approach actions T1-1, T2-1, T5-1 and T6-
1. As previously discussed, such distinction is relevant for
the control strategy. For example, ignoring the deformation
when sliding under a folded object might lead to undesired
unfolding. Overall, these results highlight the importance
of the deformation information to classify semantically the
manipulation actions.

Next, we evaluated the taxonomy proposed by Paulius
et al. (2020), presented in Figure 5-c. This taxonomy
produces 22 clusters, with the largest containing 17 action-
IDs, primarily from diverse grasping actions, where quite
varied deformations are grouped together. Although this
taxonomy accounts for deformable objects, it simplifies
deformation into the categories of temporal or permanent
deformation. This approach is effective for classifying
actions that result in a permanent deformation, but does not
explicitly address manipulation skills that operate within an
object’s stress-strain elastic region. Consequently, actions
that compress, stretch, twist or bend an object might be
grouped together given the motion and interactions with the
environment that generate the deformation are the same.
This reflects the objective of the taxonomy, which was to
classify manipulation from a robot motion perspective, rather
than classifying the different types of deformation that take
place throughout a manipulation task, as in T-DOM. In
addition, the taxonomy does not explicitly classify prehensile
grasps,which limits its ability to distinguish manipulations
that involve different contact points. Altogether, this makes
the taxonomy less suited for classifying the large repertoire
of skills required for the robotic manipulation of deformable
objects.
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Figure 5. Graph clustering of manipulation actions in the proposed dataset for a) T-DOM, b) T-DOM without deformation, c) Paulius
et al. (2020) taxonomy, and d) Bullock et al. (2012) taxonomy. The nodes represent the action-IDs and the edges action-IDs which
share the same tag according to the evaluated taxonomy. The colours of the nodes represent the deformation of the object. The
edges and clusters colours indicate node connectivity. The markers represent no bending (circle), structured bending (triangle up),
unstructured bending (triangle down), and both structured and unstructured bending (square). Note that all graphs are complete
graphs but only one edge is shown for clarity.

Finally, we examine the results from the taxonomy
proposed by Bullock et al. (2012), shown in Figure 5-d.
This taxonomy creates a total of 21 clusters which, although
lower than those using Paulius et al. (2020) taxonomy,
it provides more granularity by classifying prehensile and
non-prehensile motions, contacts within the hand, and
motion at contact. This is reflected by a smaller largest
cluster of 10 action-IDs (compared to the 17 action-IDs
in Figure 5-c). This cluster of ”grasp” actions resembles
that appearing in our taxonomy without deformation in
Figure 5-b. Similarly, actions such as lifting, transporting,

and folding are grouped together because deformation is
not considered. As previously mentioned, the deformation
information is relevant because it imposes constraints to the
possible motions, and therefore, the planning of actions. In
addition, Bullock’s taxonomy does not consider environment
contacts, which are important in tasks like placing. This
omission explains why placing actions are grouped together
with transport, lifts and folds in Bullock’s taxonomy, while
they are separated in Figure 5-b. These passive contacts
with the environment are relevant in rigid manipulation to
generate external forces, which are implicitly addressed in
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Bullock’s taxonomy in categories 5 and 7, where passive
motion at contact occurs due to an external force. However,
these contacts are even more crucial for deformable objects
such as clothes, where they act as a third agent that shapes
the geometry of the object (Borràs et al. 2020). Hence, by
adding the category non-prehensile environment we can treat
the environment as an additional gripper within the system,
which is relevant in both high- and low-level planning

It is important to note that through our analysis we are
not suggesting that the baselines taxonomies are incorrect.
These taxonomies were developed with different objectives
in mind. Our aim is to point that these are missing semantic
tags relevant for the robotic manipulation of deformable
objects which are incorporated in our proposed taxonomy.

6 Discussion & Future Work
This section discusses future directions as well as potential
applications of the taxonomy to key aspects of deformable
object manipulation.

6.1 Extending Deformation Categories
The proposed taxonomy provides an understandable cate-
gorisation of the deformations that can arise when manip-
ulating deformable objects. However, other types of defor-
mations, such as tearing and cutting (Heiden et al. 2023)
or permanent deformation of an object (Shi et al. 2024) are
not incorporated into T-DOM. These deformations involve
the irreversible breaking of material bonds, making them
significantly more difficult to predict and control compared
to deformations like bending or stretching. The study of
such permanent deformations is in its early stages, but there
are ongoing efforts to address these complex deformation
types (Xu et al. 2023; Haiderbhai et al. 2024).

Future advances in deformable manipulation tasks will
allow the taxonomy to integrate further deformation types,
enhancing its applicability to a broader range of tasks.

6.2 Measuring Deformation
The presented categories for deformation have been given
different levels of attention in literature depending on the
type of objects. For volumetric, mostly compression is
studied. In contrast, for clothes or cables most attention is
put on bending. Indeed, there are several efforts to accurately
measure the bending deformation of an object Sanchez
et al. (2018), which is critical in the precise manipulation
of deformable objects Longhini et al. (2024). One example
of these efforts is the derivative of the Gauss Linking
Integral Coltraro et al. (2023), which can provide a low-
dim topological representation of cloth state that allows the
classification of different bending classes only by distance.
While other types of deformation such as tension and shear
have been less extensively explored in cloth manipulation,
these are highly relevant for planning the control strategies.

At the moment, there is no consensus regarding the
sensing and representation of deformation. Our taxonomy
aims to pave the way of categorising deformable object
manipulation, which could be integrated with techniques that
can simultaneously measure deformation and force to plan
manipulation.

6.3 Assisted Gripper Design

The process of gripper design requires expertise in multiple
domains, as well as significant efforts involving the
refinement of the design (Babin and Gosselin 2021).
Manipulation taxonomies such as Bullock et al. (2012) have
influenced several gripper designs (Rojas et al. 2016; Zhou
et al. 2018). These taxonomies can assist by providing a
structured framework to analyse the gripper manipulation
modes. As an example, this can enable engineers to tailor
specific features that effectively perform manipulation tasks
such as in-hand manipulation (Xie et al. 2024). Here, T-DOM
can further aid researchers to devise grippers that specialise
in deformable object manipulation tasks, such as grippers
designed for textile manipulation (Hinwood et al. 2020).

To overcome the arduous task of hand-engineering gripper
designs for a specific task, co-design algorithms emerged
as an alternative to alleviate such human efforts (Deimel
et al. 2017; Chen et al. 2020; Kim et al. 2021; Dong
et al. 2024b). These approaches have largely focused on
rigid object manipulation, leaving designs for deformable
object manipulation under-explored due to the complex
nature of deformable objects and their interactions. T-DOM
offers a structured framework to potentially bridge this gap,
facilitating robot design tailored to deformable objects. For
instance, retrieving a pancake from a pan highlights the
importance of deformation constraints, where in order to
preserve the pancake’s integrity prehensile grasps need to
be avoided, as this would risk destroying the object. Instead,
strategies such as contact sliding beneath the pancake and
non-prehensile interactions over a wide contact area are
preferred (Beetz et al. 2011).

By systematically applying T-DOM subcategories to
define task-specific criteria, either for hand-engineered or
co-design algorithms, the morphology of a gripper can be
adapted to achieve the desired manipulation goals.

6.4 Towards General Manipulation Skills

Finally, in deformable object manipulation, policies are
often designed for specific tasks (Zhang and Demiris 2022;
Driess et al. 2023; Le et al. 2023), limiting their broader
applicability. However, many manipulation actions are
shared across different tasks. As shown in our experiments,
T-DOM can identify these shared actions, enhancing policy
generalisation. For instance, tasks with the same taxonomy
code may involve similar actions, allowing a policy trained
on one task to be adapted to another. This identification can
improve the efficiency and versatility of robotic systems,
reduce the need for retraining, and enable quicker adaptation
to new tasks.

Despite the recent advances in language models for
manipulating both rigid and deformable objects (O’Neill
et al. 2024; Kim et al. 2024), most of these approaches
neglect the deformation information of the object. In this
context, the identification of shared actions and different
deformations using T-DOM could facilitate learning multi-
task policies for complex deformable object manipulation
tasks.
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7 Conclusion

This work introduced the Taxonomy for Deformable Object
Manipulation (T-DOM), aimed to classify the skills required
to perform robotic manipulation of deformable objects.
The taxonomy focuses on three crucial components: robot
motion, the interactions with the robot end-effector or the
environment, and most importantly, object deformation.
Key to this taxonomy is a deformation classification that
draws from mechanical engineering concepts to categorise
deformation via compression, tension, bending, torsion, and
shear. Here, we discussed the challenges of identifying
different bending deformations, and, to circumvent such
challenge, proposed qualitative metrics to classify the
existence of complex creasing as structured and unstructured
bending, respectively. Then, we introduced a classification
for robot motion from a dynamics and energy perspective,
integrating quasi-static and dynamic manipulation. Next, for
interaction types, we defined prehensile grasps based on the
contact constraint geometry, non-prehensile interactions to
distinguish between the environment and agent interactions,
and included the special case of contact sliding, also referred
to as motion at contact.

To evaluate the taxonomy’s effectiveness in characterising
deformable object manipulation, we curated a dataset of
tasks involving various deformable objects such as cloths,
meat-like silicone, and surgical aprons and gloves. We
applied T-DOM to classify the task manipulation transitions,
representing the actions as action-IDs inspired by prior
taxonomies. Our analysis demonstrated that classifying the
type of deformation is essential for distinguishing similar
robot actions across different deformable objects, where the
proposed taxonomy offers a comprehensive framework for
classifying the manipulation strategies required for these
tasks.

Finally, we discussed potential applications and research
directions of the proposed taxonomy, connecting the
discussed types of deformation with methods for accurately
measuring deformation, and providing a generic view into
general manipulation policies. All in all, we believe T-DOM
lays a solid foundation for advancing the understanding and
development of deformable object manipulation.
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Borràs J, Alenyà G and Torras C (2020) A grasping-centered
analysis for cloth manipulation. IEEE Transactions on
Robotics 36(3): 924–936.

Bretl T and McCarthy Z (2014) Quasi-static manipulation of
a kirchhoff elastic rod based on a geometric analysis of
equilibrium configurations. The International Journal of
Robotics Research 33(1): 48–68.

Bullock IM, Ma RR and Dollar AM (2012) A hand-centric
classification of human and robot dexterous manipulation.
IEEE transactions on Haptics 6(2): 129–144.

Callister Jr WD and Rethwisch DG (2018) Materials science and
engineering: An introduction. 10 edition. John Wiley & Sons.
ISBN 9781119405498.

Canberk A, Chi C, Ha H, Burchfiel B, Cousineau E, Feng S
and Song S (2023) Cloth funnels: Canonicalized-alignment
for multi-purpose garment manipulation. In: 2023 IEEE
International Conference on Robotics and Automation (ICRA).
pp. 5872–5879.

Chavan-Dafle N and Rodriguez A (2018) Stable prehensile pushing:
In-hand manipulation with alternating sticking contacts.
In: 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, pp. 254–261.

Chen LY, Shi B, Seita D, Cheng R, Kollar T, Held D and Goldberg
K (2023) Autobag: Learning to open plastic bags and insert
objects. In: 2023 IEEE International Conference on Robotics
and Automation (ICRA). pp. 3918–3925.

Chen T, He Z and Ciocarlie M (2020) Hardware as policy:
Mechanical and computational co-optimization using deep
reinforcement learning. arXiv preprint arXiv:2008.04460 .

Chi C, Burchfiel B, Cousineau E, Feng S and Song S
(2024) Iterative residual policy: For goal-conditioned dynamic
manipulation of deformable objects. The International Journal
of Robotics Research 43(4): 389–404.

Chi C and Song S (2021) Garmentnets: Category-level pose
estimation for garments via canonical space shape completion.
In: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV). pp. 3324–3333.

Coltraro F, Amorós J, Alberich-Carramiñana M and Torras C (2022)
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