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Abstract— The first WARA Robotics Mobile Manipulation
Challenge, held in December 2024 at ABB Corporate Research
in Västerås, Sweden, addressed the automation of task-intensive
and repetitive manual labor in laboratory environments —
specifically the transport and cleaning of glassware. Designed
in collaboration with AstraZeneca, the challenge invited aca-
demic teams to develop autonomous robotic systems capable
of navigating human-populated lab spaces and performing
complex manipulation tasks, such as loading items into in-
dustrial dishwashers. This paper presents an overview of the
challenge setup, its industrial motivation, and the four distinct
approaches proposed by the participating teams. We summarize
lessons learned from this edition and propose improvements
in design to enable a more effective second iteration to take
place in 2025. The initiative bridges an important gap in
effective academia-industry collaboration within the domain
of autonomous mobile manipulation systems by promoting the
development and deployment of applied robotic solutions in
real-world laboratory contexts.

Index Terms— Mobile Manipulation, Collaborative Robotics,
Lab Automation

I. INTRODUCTION

Modern biomedical research often relies on precise and
repetitive lab procedures carried out by highly qualified
personnel. Despite advancements in experimental techniques
and research technologies, routine tasks — such as preparing
solutions, cleaning instruments, or organizing equipment —
continue to be performed manually in many laboratories.
In particular, washing glassware remains a labor-intensive
process that, while crucial for ensuring cleanliness and ad-
herence to quality standards, does not require specialized ex-
pertise. Instead, it consumes the valuable time of researchers
who could otherwise devote their skills to scientific duties.

The WASP Research Arena (WARA)-Robotics, hosted by ABB Corporate
Research Center in Västerås, Sweden is financially supported by the Wal-
lenberg AI, Autonomous Systems, and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation.
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Fig. 1: Lab Automation use-case in the AstraZeneca chem-
ical laboratories: a human operator drives a cart around the
lab to collect dirty glassware, organizes it in a dishwasher
tray, and finally inserts the tray in the dishwasher.

The primary motivation behind the first WARA Robotics1

Mobile Manipulation Challenge, hosted at ABB Corporate
Research in Västerås, Sweden, was to address the problem
of task-intensive lab work. The challenge aimed to push the
boundaries of mobile manipulation research by tackling a
highly relevant but under-explored real-world use case: au-
tomating routine laboratory workflows. Specifically, it aimed
to develop systems capable of autonomously navigating
human-populated spaces to transport carts of glassware from
one location to another and manipulate items for loading
into an industrial dishwasher. The challenge use-case was
proposed by AstraZeneca (as depicted in Figure 1) and it
encompassed multiple interconnected sub-tasks, including
safe navigation, grasping and dexterous manipulation, as well
as perception for object detection and pose estimation. By
tackling these complex research areas, participating teams
created innovative robotic solutions that have the potential
to transform lab routines, thereby allowing scientific staff to
reallocate their time to high-value-adding research activities.

Engaging in this type of challenge enables WASP indus-
trial partners to guide the direction of academic groups,
ensuring alignment with practical, real-world applications.
This strategic collaboration accelerates progress in the field
while providing mutual benefits to all parties involved,

1https://wara-robotics.se/

https://wara-robotics.se/
https://arxiv.org/abs/2505.06919v1
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particularly in learning and knowledge development. While
the specifics of these benefits cannot be precisely predicted,
it is expected that they will emerge in the future, contributing
to the ongoing growth and advancement of the robotics
community.

This paper describes the four different approaches to solve
the task as proposed by the participating teams and outlines
the results and lessons learned. Importantly, the challenge
also served as a way to evaluate the technology readiness of
academic research, offering a realistic testbed for translating
theoretical advances into deployable systems. These insights
will help formulating the 2nd iteration of the challenge.

II. CHALLENGE RULES

The participating teams were challenged to develop a
system that autonomously and safely navigates in a human-
populated lab environment, localizes a cart loaded with glass-
ware that needs washing, transports the cart to a designated
dishwasher room, and manipulates the glassware for loading
into an industrial dishwasher. There were no restrictions on
the choice of the robotic platform nor the solution strategy.

A challenge mock-up kit (shown in Figure 2) was sent
to the teams to allow them to develop and test their own
solutions before coming to the WARA Robotics lab in
Västerås. In the mock-up kit, the lab glassware was replaced
by plastic items, comprising 3 bottles and 3 beakers.

The challenge was composed of the following sub-tasks.

A. Carting glassware that needs washing

The first sub-task concerned a mobile robot navigation and
manipulation setup. In this task, the robot had to navigate an
environment to a preset goal location where a cart had been
positioned. A bin filled with randomly placed plasticware
was positioned on the cart. Then, the robot had to pull/push
the cart and navigate again to a second marked location
in a room where the dishwasher tray was set up. It was
assumed that there were no closed doors for the robot to
manipulate along the way. For this task the robot had only
onboard sensors available which included for instance lidars
and cameras. WARA Robotics provided a 2D occupancy
map of the environment as prior and allowed teams to run
a (teleoperated) mapping session prior to addressing the
challenge, if desired. The task was considered successfully
completed if the robot was able to move the cart from the
start to the goal location. It was also expected that the path
the cart needs to take included at least one left and at least
one right turn.

B. Manipulating glassware and dishwasher

The second sub-task assumed that the robot was already at
the dishwasher tray location and was presented with a table-
top scenario. A bin filled with randomly placed plasticware
was provided at one end of the table and the dishwasher tray
at the other end, with both placed roughly within predefined
workspace zones. The task of the robot was then to select
items from the bin, to pick them up, and to safely insert them

Fig. 2: All the teams received equipment to mock-up the lab
automation use-case. The equipment included a cart with 4
castor wheels, a plastic bin, a plastic base hosting 2 different
types of dishwasher pins (to mimic the dishwasher tray), 3
plastic bottles, and 3 plastic beakers.

onto the pins sticking out from the dishwasher tray. Different
levels of difficulty were envisioned for this task, ranging
from very easy (small workspace feasible for a fixed-base
robot, homogeneous non-transparent items tagged with QR
codes) to very hard (large workspace that requires a mobile
base, heterogeneous transparent plastic objects). This task
focused on random bin picking and automatic loading, while
unloading the tray was still performed manually.

III. APPROACHES

This section provides an overview of each team’s approach
to solve the proposed challenge. Four teams from different
universities took part in the challenge: Örebro University
(ÖrU), Politecnico di Milano (PoliMi), KTH Royal Institute
of Technology (KTH), and Lund University (LTH). A short
overview of the strategy used by each team and what task
they focused on is reported in Table I, where Task A rep-
resents the mobile navigation sub-task (II-A), while Task B
indicates the dishwasher loading sub-task (II-B).

TABLE I: Summary of the strategy adopted by each team.

Team Platform Gripper Perception Task

ÖrU Franka Panda parallel RGB-D camera B

PoliMi GoFa 5 parallel + suction RGB-D camera B

KTH Mobile YuMi parallel RGB-D camera A&B

LTH Mobile YuMi parallel RGB-D camera A

A. Örebro University (ÖrU)

The ÖrU team focused on subtask B, dishwasher loading.
The robotic manipulation system consisted of a Franka
Emika Panda arm with custom 3D-printed fingers and an
Intel RealSense D435i camera, as shown in Figure 3a.
Together, the vision, grasping, and task execution systems
enabled the robot to detect, grasp, and place transparent
bottles and beakers onto designated dishwasher pins.
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(a) (b)

Fig. 3: (a) Robot hardware setup. (b) Behavior Tree.

1) Vision System: The vision system relied on the RGB-D
camera to detect and localize objects and pins. It needed to
overcome challenges inherent to transparent surfaces, such
as unreliable depth data and noisy point clouds.

a) Bottle and Beaker Detection and Localization:
To overcome the problem of poor depth information, they
employed MoGe [1] for monocular depth estimation from
RGB images which produced more refined depth information
compared to the camera depth image. The point cloud from
estimated depth was used to segment the bin with the
objects in it. They then applied cylinder fitting to the points
inside the bin to detect the cylindrically shaped objects,
mapping the inliers from the fitting process to pixels in
the depth image. Using an empirically developed ranking
system based on pixel count (indicating visibility) and aspect
ratio (closeness to 1 indicating better geometry) that ensured
robust object selection for manipulation, the best detection
was selected for grasping. The process overview is shown
in Figure 4a. The estimated depth is relative, not metric,
but with a single object layer and near-vertical camera it
was converted to Cartesian coordinates using the camera’s
intrinsic parameters.

b) Opening Direction Detection: Cylinder fitting lo-
cates bottles and beakers but doesn’t reveal the openings’ ori-
entation. To ensure proper placement with the opening facing
downward, an extra step was added to identify its direction.
Once the object is held in the gripper, they segmented it with
SAM2 [2] and determined its orientation through a custom
feature detection module that analyzed structural differences
between the upper and lower parts of the object, as shown
in Figure 4b. The system then decided whether the object
should be flipped to ensure correct orientation for placement.

c) Pin Localization: The pin localization process was
based on the estimation module from FoundationPose [3].
This framework utilized an RGB-D image along with a mesh
model of the plastic base and two pins to estimate the pose of
the object. To improve accuracy, they incorporated a post-
processing step that evaluated the quality of the estimated
pose. This step relied on a simple registration error metric,
which measured the sum of distances between mesh vertices
and their nearest neighbors in the point cloud with a lower
sum distance indicating a better alignment. To refine pose
estimation, the system selected the estimate with the lower
registration error between the proposal with initial orientation
and a proposal rotated by 180° around the vertical axis.

2) Grasping System: The team used a custom-designed
gripper and a Cartesian impedance controller for manip-
ulation [4]. The gripper featured a curved front end that
centered the object and aligned its axis with the tool tip,

(a)

(b)

Fig. 4: (a) Bottle and beaker detection and localization. (b)
Opening direction detection.

facilitating accurate placement (Figure 3a). The Cartesian
impedance controller provided compliant behavior during
motion execution in response to external forces, improving
accuracy during contact-rich operations such as insertion
reducing the impact of minor pose errors.

3) Task Execution: A Behavior Tree (BT) [5] was used
to define and execute the robot’s behavior, structured into
three main sub-trees (Figure 3b): Detect Rack, Picking, and
Placing, each handling a key phase of the manipulation task.

The Detect Rack sub-tree guided the arm to the placing
area and performed the pin localization III-A.1.c, providing
a reference for accurate object placement.

The Picking sub-tree began with Detect objects in the
box, which moved the arm near the bin and ran the object
detection routine III-A.1.a. This behavior included adaptive
end-effector adjustments to improve detection in cluttered
conditions. Upon successful detection, the system transi-
tioned to Grasp object, using the gripper’s position sensor to
differentiate beakers from bottles based on diameter.

The Placing sub-tree included the Detect object orientation
step III-A.1.b, followed by the placement action, aligning the
object with the correct dishwasher pin.

To increase robustness, the BT incorporated two recovery
mechanisms: one for failed grasps, using finger feedback to
retry detection and grasping; and another during insertion,
using force sensing to detect incorrect orientation, reorient
the object, and retry placement. This modular structure en-
abled reliable task execution while handling common errors
in a cluttered lab environment.

4) Limitations: The proposed approach made the follow-
ing assumptions: (i) the bin contained only a single layer
of objects, (ii) the environment was relatively uncluttered,
and (iii) the system did not have a recovery mechanism
if the placement failed. Potential solutions to overcome
these limitations included aligning the estimated depth to
metric depth, incorporating Vision-Language Models (VLM)
to detect the plastic bin and dishwasher pins in a cluttered en-
vironment and to generate masks for subsequent processing,
and designing a robust placement detection module using a
VLM to verify the correct placement of objects.

B. Politecnico di Milano (PoliMi)

The PoliMi team focused on subtask B, dishwasher load-
ing. Their setup was built around an ABB GoFa 5 equipped
with a gripper featuring custom 3D-printed fingers, shown
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Fig. 5: The setup proposed by PoliMi was built around an
ABB GoFa 5 collaborative robot, equipped with a Realsense
D435i stereo camera and a custom parallel gripper optimized
for the pin insertion task. A detachable suction cup was also
employed for the bin-picking task.

Bin Picking

Regrasping
x

y

Layout Definition

Object grasped?

Loading

NO

YES

Fig. 6: Team PoliMi approach involved teaching the desired
tray layout through single-shot kinesthetic demonstration.
Bin-picking and regrasping actions were repeated iteratively
until the dishwasher tray was fully loaded.

in Figure 5. The gripper was mounted on a flange holding an
RGB-D Realsense d435i camera. The setup also comprised
a suction cup which was used to extract bottles and beakers
from the bin to overcome the limitations of unfeasible
grasping poses due to the finger encumbrance. The team
proposed to leverage the flexibility of a one-shot kinesthetic
teaching approach, which they used to teach dishwasher
loading to the robot. Moreover, they used visual perception
to detect the desired target during bin picking and to estimate
object poses for a regrasping action, which was used to
position the parts on the fixtures before the loading phase.
Their framework consisted of four principal components, as

shown in Figure 6 and detailed below.
1) Layout definition: This initial step allowed the user

to specify the number of bottles and beakers to be loaded
into the dishwasher, along with their layout on the tray.
This information was provided to the system by leveraging
Programming by Demonstration. To define a new layout,
the user first selected the type of item to be loaded. Then,
they hand-guided the robot from the item’s dedicated fixture
to the dishwasher pins, storing movement waypoints and
actuating the gripper when needed through the GoFa arm-
side interface. Thus, the entire layout was defined as a set of
loading skills [6]. A dedicated user interface allowed the user
to easily teach and store a new layout or load a previously
defined one.

2) Bin-picking: Given a predefined layout, the bin-picking
phase was used to extract from the bin one of the items
required by the layout. For this purpose, the robot grabbed
the suction cup from its holder with the gripper and moved
above the bin-picking area to allow a proper view of the
entire bin with the in-hand camera. A fine-tuned YOLO-
based Deep Neural Network (DNN) model [7] recognized
objects in the bin as bottles or beakers. Then, a SAM2 [2]
module segmented the items and estimated their picking
pose. For each localized object, the depth was extracted by
averaging the perceived depth over the mask. Among the
objects required by the predefined layout, the closest one to
the camera was selected for grasping, to avoid occlusion and
facilitating extraction. Then, the picked item was released in
a regrasping area in front of the robot.

3) Regrasping: The extracted object was prepared to be
placed in the tray through a regrasping pipeline. A fine-
tuned YOLO-based DNN model was used to detect the
object in the grasping area that matched either the “bottle”
or “beaker” label, selected during bin-picking. The region
of interest obtained from a successful detection was fed
to a SAM2 module that extracted the object mask, which
was then refined through erosion and dilation steps. These
morphological transformations mitigated inaccuracies arising
from object transparency, which might have led to poor
segmentation performances. Finally, a template-matching
procedure determined the mask centroid. A candidate, top-
down, grasping pose was computed by shifting this point
along the principal axis of the item, identified by fitting a
minimum area aligned bounding box to the mask, towards the
bottom side of the object. The computed grasping pose was
used to correctly grasp the object with the parallel gripper
and place it in the corresponding fixture.

4) Loading: Once the item was regrasped and placed in
the fixture, the system loaded the waypoint list corresponding
to the action being taught by the user. Thus, through simple
linear waypoint movements and gripper actuation, the robot
was able to load the object onto the target pin. The system
then updated the item list by removing the object that had
just been loaded. After that, it iterated back to the bin-picking
phase until every item in the layout was loaded.

The four modules were used to build the pipeline shown
in Figure 6. The initial layout definition was used to de-
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fine the loading task, stating which item to place on each
dishwasher pin. The loading actions composing the layout
were saved as list of waypoints, taking the item from the
corresponding loading area (shown in Figure 5) to the desired
pin. During the loading phase, these actions were executed
as fixed linear waypoints motions to move the item from
the initial fixture to the target pin. This approach enabled
reuse of the layout across dishwasher cycles without relying
on complex vision systems. It ensured precise and safe
loading, allowing users to easily define robot movements in
cluttered environments. In contrast, using vision to detect
pins and loading areas on real dishwashers would have been
challenging due to complex tray layouts, reflective surfaces,
and moisture—factors that significantly increase perception
errors. Regarding the intermediate regrasping step, its pur-
pose was twofold: it was used to prepare the object, with its
base facing upwards, for the loading phase, but also to check
whether the grasp executed during the bin-picking phase
was successful or not. If no graspable object was detected,
the bin-picking module was repeated until an object of the
desired type was extracted and placed on the table.
Overall, the proposed solution showed reliable performance
on the challenge day, being able to load both pins on every
run. The cycle time for the full pipeline took around two
minutes per object, from bin-picking to loading. Despite the
heavily reflective objects, the bin-picking pipeline also show-
cased good performance, as image post-processing through
different color filters and depth averaging managed to return
feasible target poses for the suction cup.
The main drawback of the method was its reliance on static
fixtures in the regrasping area, required as an intermediate
step to complete the loading procedure. Another element that
penalized cycle times was the choice of a six-degrees-of-
freedom (DoF) robot, as having no redundancy translated
into longer unwinding motions to prevent reaching joint
limits or cable entanglement The main failures stemmed from
the suction cup getting stuck in bin corners or struggling with
cluttered layers of mixed objects—though none occurred on
the challenge day. Future setups should integrate the suction
cup into the gripper and eliminate regrasping fixtures to
enhance dexterity and flexibility.

C. Royal Institute of Technology (KTH)

The KTH team used the ABB Mobile YuMi research plat-
form, customized multipurpose grippers, and a ROS2-based
perception and navigation software stack. Their solution ad-
dressed the complete WARA Robotics Mobile Manipulation
Challenge, thus tackling both subtasks.

The approach made several operational assumptions to
limit the task complexity. It assumed that the approximate
initial position of the cart, the positions for offloading,
and the dishwasher locations were predefined. Regarding
manipulation, it assumed that cups and bottles were initially
placed upright on surfaces of known height that ideally
had distinct, non-reflective, and non-white appearances to
facilitate reliable visual detection. Additionally, tables and
trays were assumed to be visually distinguishable.

Fig. 7: The KTH multi-purpose finger design is shown by
the active regions, in blue for plasticware manipulation and
red for cart handling.

1) Hardware Setup: The ABB Mobile YuMi research
platform was chosen to address the challenge. It comprises an
ABB Dual-Arm YuMi robot mounted on a telescopic pillar
fixed on a custom-made omnidirectional base. The robotic
base uses four independently steerable and drivable wheels
to achieve almost-instantaneous arbitrary change in planar
velocity, i.e. directional and rotational. The mobile base is
equipped with two 2D lidar sensors (front and back) for
mapping and localization. The manipulator is a dual-arm
ABB YuMi robot. Each arm has 7-DoF with a payload of
500g. An Azure Kinect RGB-D camera, mounted atop the
robot, provides visual and depth information required for
perception tasks.

The team mounted custom-designed grippers (Figure 7)
that offered compliant and adaptable grasping capabilities
suitable for grasping of both the cart handle and cylin-
drical plasticware. This multi-purpose gripper design has
demonstrated its effectiveness in manipulation with multiple
modalities [8], [9]. As the gripper closed, the handle or the
plasticware naturally slid to tightly match the inner surface
of the fingers despite the positional uncertainty, exemplifying
a mechanical funnel [10]. It also showcased the usage of
pregrasp cages as waypoints for object grasping [11], [12].

2) Software Stack: The software architecture utilized
ROS 2 and integrated existing open-source packages with
custom modules. Navigation functionalities were provided
by SLAM Toolbox for environment mapping, Nav2 with
Adaptive Monte Carlo Localization (AMCL) [13], and Smac
Hybrid-A* planner [14] for path generation. The team
implemented an adaptive robot footprint that dynamically
accommodated the additional geometry of the cart during
transport.

The object-detection module employed a YOLO-based [7]
DNN to recognize and localize bottles and cups in the
RGB images. Bounding boxes were projected into the depth
space to compute the three-dimensional positions on a ta-
ble or within a workspace. Plane segmentation was then
applied to localize the height of objects. For dishwasher
trays, a separate detection pipeline using a transformer-based
model (Grounding DINO [15]) located black plates (the tray
surface) and pins. Point-cloud processing through principal
component analysis (PCA) and convex hull optimization
identified the tray corners and pin positions.

The robot control was realized through high-level prim-
itives interfacing with ABB hardware controllers through
ABBs RWS API [16] with an adapted version of the interface
from [17]. An impedance control strategy ensured robustness
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Fig. 8: In KTH’s carting method, the mobile base was
velocity controlled and followed the illustrated color-based
visual servoing policies. The impedance control of the robot
arms enabled robust grasping and transportation.

against positional uncertainties and alignment inaccuracies
during grasping and manipulation.

3) Task-Specific Strategies: The cart handling procedure
used visual servoing based on HSV color segmentation
for alignment with cart handles, followed by impedance-
controlled lateral grasping. After grasping, the navigation
module dynamically updated the robot’s collision footprint
to safely transport the cart. The masking and visual servoing
approach are shown through real examples in Figure 8.

The plasticware manipulation subtasks involved detect-
ing upright cups and bottles using YOLO-based detection,
computing suitable grasp poses, and executing impedance-
controlled grasps. Placement into dishwasher trays leveraged
transformer-based detection to identify tray structures and
pins, with impedance-controlled insertion motions, ideally
ensuring safe and precise object placement.

4) Results and Discussion: Subsystem evaluations
demonstrated reliable performance, although full integration
between navigation and manipulation subsystems was not
completed within the available timeframe. Plasticware
detection was qualitatively accurate, and multiple successful
grasps and placements were observed during experimental
trials. An example successful trial is shown as a step
sequence in Figure 9. Navigation and cart pushing tasks
achieved reliable performance, validating the effectiveness
of visual servoing and adaptive footprint planning. An
example successful cart approach and grasp is shown
in Figure 8. Overall, the described approach showcased a
high degree of modularity, where off-the-shelf algorithms
were integrated with custom gripper hardware and task
primitives.

While the color-based cart detection operated effectively
in controlled lighting conditions, it may require more ro-
bust segmentation methods for environments with similarly
colored backgrounds. Furthermore, the dishwasher-loading
pipeline relied on known and consistent object orientation,
limiting its applicability to objects lying on their sides or
in cluttered bins. Further potential sources of failure were
(i) the absence of explicit failure detection and recovery
mechanisms, (ii) errors in object and goal pose estimation
from the perception pipeline, and (iii) variability in wireless
network communication quality with the mobile robot.

Fig. 9: The KTH plasticware manipulation is shown through
an example sequence. The top row shows pick procedure
through the bottle-detection, grasping, and moving steps. The
bottom row shows the placing procedure through the pin-
detection, insertion, and compliant pushing steps.

Future iterations of the manipulation challenge could be
centered around the encountered limitations and sources
of failure, leading to more reliable and widely applicable
solutions. The original plan in this project was to incorporate
the skills to solve each sub-task into a reactive Behavior Tree
policy [18]. While that was not possible within this project
due to time constraints, it would be an interesting extension
that should notably improve robustness.

D. Lund Technical University (LTH)

The LTH team focused on the autonomous cart navigation
subtask A, particularly cart pulling. Their approach was to
use Model-Predictive Control (MPC) to achieve holistic con-
trol of the ABB Mobile YuMi research platform. To reduce
the complexity of the problem, some initial assumptions were
made, which then got slightly relaxed: the robot’s, cart’s,
and goal positions were known and accurate and the cart’s
handlebar was easily recognizable in the environment.

1) Hardware Setup: The ABB Mobile YuMi research
platform was chosen for the cart navigation task with stan-
dard off-the-shelf ABB fingers mounted on both grippers,
as the gripping width was enough to hold the cart by its
handlebar.

2) Software Stack: The actual control of the robot was
performed using ROS 2, with hardware specific drivers for
each sub-robot (i.e. the torso, the pillar, and the base) and
a whole-body control interface for the entirety of the robot.
The control signals were generated by a custom-made MPC
using the Crocoddyl optimal control library [19]. A set
of Cartesian trajectory tracking controllers were used as a
fallback strategy in case of convergence issues.

3) Modeling: From a path-following perspective, both the
dual-arm mobile manipulator and the cart were modeled as
points in the xy-plane with a heading direction, expressed by
two reference frames, ΣB and ΣC respectively, having the
z-axis orthogonal to the world plane, expressed by the frame
ΣW . It was assumed that the robot was rigidly grasping the
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Fig. 10: Model schematic. The red line represents mobile
base’s obstacle-free path obtained from the path planner,
while the green line represents the history of base’s posi-
tions, which is converted into a reference trajectory for the
handlebar and thus the cart.

cart at its handlebar with both arms, in a symmetric fashion.
In this way, ΣC was constrained to be between ΣL and
ΣR, making the cart navigation problem an absolute-relative
control task. An additional assumption was that the mobile
base was constrained to non-holonomic movements, while
the cart can move freely in space.

4) Method: The cart-pulling navigation problem was split
into two separate subproblems. Firstly, a smooth, safe, online
path was generated for the mobile base. This path was
followed by a trajectory-tracking controller moving the base
along the path. Secondly, the cart was steered so as to avoid
obstacles while minimizing the arms’ effort and maintaining
manipulability. These goals were accomplished by prescrib-
ing the cart’s path to be the path traversed by the base, i.e.
the path comprised of previous base positions. This way the
cart also followed a smooth obstacle-free path. The model
with the constructed references can be seen in Figure 10.

a) Path generation: To navigate the cart-robot system
in the environment, an obstacle-free path was generated. This
was achieved in an online fashion, to account for dynamic
obstacles. Before creating a path, obstacles were identified
and converted to a useful representation for the planner. Lidar
scanners were employed to collect distance measurements of
the surrounding environment. The obtained distances were
converted to a point cloud and morphologically inflated into
circles in the xy-plane. A morphological union was then
performed so to gather circles in bigger blobs, which were
then simplified in the interest of computation time for the
next step. The starrification algorithm in [20] was used to
convert the obstacles in starshaped ones. The obstacles were
further inflated with a clearance radius using [20] to create a
tube-path that guaranteed convergence to the goal pose using
the planner in [21]. The clearance radius was set to be the
biggest radius that individually encircled the robot and cart.
The path was a limited-horizon orbit of a dynamical system
describing the flow towards the goal:

ṙ = M(r,O)(rg − r)

with r the current robot position, rg the desired goal, M(·, ·)
a matrix that describes the attractive dynamics, and O is the
set of world obstacles.

Compute Time (12.5 / 13.1 / 2.9)
Time: 2.6 s

Compute Time (17.6 / 8.7 / 8.4)
Time: 6.2 s

Compute Time (17.9 / 4.8 / 3.7)
Time: 8.2 s

Compute Time (8.6 / 1.7 / 2.6)

Fig. 11: Path generation for a unicycle robot with dynamic
obstacles and safety guarantees over time (left to right). The
robot (yellow arrow) follows the kinematically constrained
trajectory (black dashed) while staying inside the safe area
(red boundary) of the local desired trajectory (green solid),
reaching the goal (star), never colliding with the dynamic
obstacles (circles, translating vertically or horizontally). The
overall motion is depicted in solid black, while the obsta-
cle safety boundaries are depicted in light red. Generated
with [20].

b) Base path following: Given a path, the robot’s mo-
bile base was tasked with moving backward while minimiz-
ing the time required to reach the goal. An MPC controller
was employed to move the robot on track in the shortest time.
The same controller was also tasked with arm control. The
prescribed path consisted of both positions and orientations.

c) Cart trajectory following: The SE(2) path for the
cart was constructed from the SE(2) path previously traversed
by the base. Due to the cart being a rigid body and the
rigid grasping of the cart’s handlebar, the cart’s path was
transformed into SE(3) paths for the left and the right gripper.
The (x, y) translations were provided by base’s past path, as
well as one degree of rotation. The height of the handlebar
was fixed, and the rigid grasp covered the remaining 2
degrees of rotation. To avoid extending the arms and avoid
collision between the cart and the base of the robot, the cart’s
path started at a predetermined fixed arc-length distance
between the base’s current position and a point among its
previously traversed positions. Finally, the same timing law
imposed on the base was used for the end-effector paths.

Upon grasping of the handlebar, the initial path between
cart and robot was set to be a Bezier curve that smoothly
connects the cart with the base. This path was subsequently
updated with base’s positions.

5) Results: The implementation was not finished in time
for the challenge day, on which simulation results were
shown within the presentation of the team’s approach. How-
ever, the proposed solution was pursued further, with addi-
tional lab visits, for the purpose of a standalone publication
which is in progress at the time of writing.

IV. CONCLUSIONS AND LESSONS LEARNED

The first WARA Robotics Mobile Manipulation Challenge
proposed a highly unstructured lab automation use-case and
gave the freedom to the participating teams to choose the
robotic platform as well as the solution strategy. A video of
the challenge day is available online2.

The teams from Politecnico di Milano (PoliMi) and Örebro
University (ÖrU) tackled the manipulation sub-task (Sec-
tion II-B) with an ABB GoFa 5 and a Franka Emika Panda
robot respectively. The solution from PoliMi achieved the

2https://youtu.be/F9PRgmFeArM?si=dyfY8xrQoy5UWdw6

https://youtu.be/F9PRgmFeArM?si=dyfY8xrQoy5UWdw6
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highest robustness both in the perception and manipulation
components. With the former they were able to handle the
case where the bin was fully loaded with objects laying in
multiple layers, while in the latter they could generalize to a
more complex dishwasher tray system (e.g., featuring more
pins). However, their approach relied on a more complicated
grasping solution as well as fixtures. On the other hand, the
solution from ÖrU could generalize to slight variations on
the position of the bin and the dishwasher tray, and they
traded off a simpler and more polished robotic system with
a slight decay on the success rate. However, by representing
the whole task plan policy as a Behavior Tree, they could
recover to failures in the perception and grasping without
halting the robot execution.

The team from Lund Technical University (LTH) focused
instead to the carting sub-task (Section II-A), using the
ABB Mobile YuMi research platform. They formulated the
problem as cart pulling instead of pushing and used a whole-
body control approach. The method was effectively working
in simulation but the team was not able to fully integrate it
on the real platform by the challenge day.

Finally, the team from the Royal Institute of Technology
(KTH) was the only one to attempt solving the full challenge
task. Although they had working solutions for both sub-tasks
individually, they were not able to combine them in a single
execution. Moreover, their approach for the manipulation
sub-task required bottles and beakers to be standing upright
instead of lying down in the bin.

A jury composed of employees from ABB and As-
traZeneca was tasked to evaluate the teams’ performances
and named Örebro University as the winner team to receive
the first prize: a 50.000 SEK participation bonus to the 2025
Automatica3 Exhibition in Munich.

The target of this first edition of the WARA Robotics
Mobile Manipulation Challenge was to raise awareness in the
academic sector about the WARA Robotics lab in Västerås.
This environment is dedicated to facilitate experimental
validation of academic research in the field of robotics and
AI through a tight connection with industrial partners who
provide technical resources as well as challenging industrial
use-cases.

The challenge also provided valuable lessons in how
to design effective robotics competitions. Flexibility in the
choice of the platform and problem interpretation allowed
creativity, but also made direct comparison between solutions
difficult. A more standardized setup—including a shared
robotic platform, digital twin environment, and clear eval-
uation metrics—will be introduced in the next edition to
support reproducibility of the results and transparency and
fairness on the evaluation.

In summary, the challenge not only showcased promis-
ing approaches to real-world mobile manipulation, but also
highlighted key areas where academic solutions still struggle
with robustness and scalability. It also reinforced the value of
using challenge-based formats to assess the technology readi-
ness level (TRL) of academic research in industry-relevant

3https://automatica-munich.com/en/trade-fair/

contexts. These insights will help guide future challenges and
foster stronger collaboration between academia and industry.
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